File:Moriplot300.jpg

From TORI
Jump to navigation Jump to search

Original file(2,366 × 572 pixels, file size: 139 KB, MIME type: image/jpeg)

The principal Bessel mode

$y\!=\!J_0(x)\theta(x)$ , red line,

and its scaled Bessel transform, expressed through the Morinaga function

$y\!=\,$mori$(x)\!=\!$ $\displaystyle \frac{J_0(L_1 x)}{1\!-\!x^2}$ , blue line.

Here, $L_n$ is the $n$th zero of the Bessel function, $L_n\!=\,$BesselJZero$[0,n]$

In particular, $L_1\!\approx\! 2.404825557695773$

Other versions

Shortened version of this image is named File:MoriplotFragment.jpg

http://mizugadro.mydns.jp/t/index.php/File:MoriplotFragment.jpg

C++ generator of curves

File ado.cin should be loaded in order to compile the code below.


#include <stdio.h>
#include <math.h>
#include<stdlib.h>
//#include "scft.cin"
#define DB double
#include "ado.cin"
DB L1= 2.404825557695773;
DB L2= 5.5200781102863115;
DB L3= 8.653727912911013;
DB L4=11.791534439014281;
//DB mory(DB x){ return j0(x)/(1.-(1./(L1*L1))*x*x);} // mory also could be principal, but for graphics mori is better.
DB morin(DB x){ return j0(L1*x)/(1-x*x);} // naive representation fails at x=1.
DB mori0(DB x){ int n,m; DB s, xx=x*x;
DB c[16]={ 1., -0.4457964907366961303, 0.07678538241994023453, -0.0071642885058902232688,
0.00042159522055140947688, -0.000017110542281627483109, 5.0832583976057607495e-7, -1.1537378620148452816e-8,
2.0662789231930073316e-10, -2.9948657413756059965e-12, 3.5852738451127332173e-14,-3.6050239634659700777e-16,
3.0877184831292878827e-18, -2.2798156440952688462e-20, 1.4660907878585489441e-22,-8.2852774398657968065e-25};
// 16th term seems to fail; perhaps, due to the C++ rounding errors.
//with m=15, at |x|<2, the relative error is of order of 10^(-16)
//In this sense, the result is accurate while |x|<2.
m=15; s=c[m]*xx; for(n=m-1;n>0;n--){ s+=c[n]; s*=xx;}
return 1.+s;}
DB mori(DB x){if(fabs(x)<2.) return mori0(x);
                        return morin(x);}

int main(){ int i; //double a[NP+1],b[NP+1]; double d=sqrt(M_PI/NP);
//double x,y,f,g; FILE *o; o=fopen("08.eps","w"); ado(o,620,820);
double x,y,f,g; FILE *o; o=fopen("moriplo.eps","w"); ado(o,620,120);
#define M(x,y) fprintf(o,"%9.4lf %9.4lf M\n",x+0.,y+0.);
#define L(x,y) fprintf(o,"%9.4lf %9.4lf L\n",x+0.,y+0.);
fprintf(o,"10 10 translate 100 100 scale 2 setlinecap 1 setlinejoin\n");
for(i=0;i<12;i++){M(.5*i,0)L(.5*i,1)}
for(i=0;i<3;i++){M(0,.5*i)L(5.5,.5*i)} fprintf(o,".006 W S\n");
M(L2/L1,1)L(L2/L1,-.04)
M(L1,1)L(L1,-.04)
M(L3/L1,1)L(L3/L1,-.04)
M(L4/L1,1)L(L4/L1,-.04)
fprintf(o,".003 W S\n");
for(i=0;i<101;i++){x=.01*L1*i; y=j0(x); if(i==0)M(x,y) else L(x,y); } L(L1,0)L(618,0) fprintf(o,".009 W 1 0 0 RGB S\n");
//for(i=0;i<122;i++){x=.05*(i-.1);y=morin(x); if(i==0)M(x,y) else L(x,y);} fprintf(o,".009 W 0 0 1 RGB S\n");
//for(i=0;i<122;i++){x=.05*(i-.1);y=mori0(x); if(i==0)M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 .9 0 RGB S\n");
for(i=0;i<122;i++){x=.05*i;y=mori(x); if(i==0) M(x,y) else L(x,y); if(fabs(y)>1) break;} fprintf(o,".009 W 0 0 1 RGB S\n");
/*
for(i=1;i<640;i++){ x=.01*(i-.5); f=mori0(x); g=morin(x); if(f==g){y=9.;}
        else { y=-log(fabs(f-g)/(fabs(f)+fabs(g))); y/=log(10.); y/=2.;};
if(i==1)M(x,y) else L(x,y); printf("%5.2lf %20.14lf %20.14lf %10.4lf\n",x,f,g,y);}
fprintf(o,".008 W 0 0 0 RGB S\n"); // this is agreement of functions morin and mori0; important at the testing.
*/
fprintf(o,"showpage\n%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf moriplo.eps");
system( "open moriplo.pdf");
}

Latex generator of labels


\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
%\paperwidth 570pt
\paperwidth 462pt
%\paperheight 138pt
\paperheight 124pt
\textwidth 420pt
\textheight 300pt
\topmargin -108pt
\oddsidemargin -73pt
\newcommand \ds {\displaystyle}
\newcommand \sx {\scalebox}
\newcommand \rme {\mathrm{e}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\pagestyle{empty}
\parindent 0pt
\begin{document}
%\begin{picture}(410,126)
\begin{picture}(410,113)
\put(0,0){\ing{moriplo}}
%\put(.6,120){\sx{1.25}{$y\!=\!\exp(-x^2/2)$ and its discrete representation with CFT at $N\!= 4$}}
%\put(.6,120){\sx{1.25}{$y$}}
\put(.6,103){\sx{1.3}{$1$}}
\put(.6,56){\sx{1.4}{$\frac{1}{2}$}}
\put(.6, 5){\sx{1.3}{$0$}}
\put(107,-2){\sx{1.3}{$1$}}
\put(207,-2){\sx{1.3}{$2$}}
\put(230,-3){\sx{1.2}{$\frac{L_2}{L_1}$}}
\put(247,-2){\sx{1.1}{$L_1$}}
\put(308,-2){\sx{1.3}{$3$}}
\put(364,-3){\sx{1.2}{$\frac{L_3}{L_1}$}}
\put(408,-2){\sx{1.3}{$4$}}
\put(452,-1.6){\sx{1.3}{$x$}}
%\put(494,-4){\sx{1.2}{$\frac{L_4}{L_1}$}}
%\put(509,-2){\sx{1.3}{$5$}}
%\put(562,-1.6){\sx{1.3}{$x$}}
\put(120,90){\rot{-28}\sx{1.3}{$y\!=\! J_0(x)\theta(L_1\!-\!x)$}\ero}
\put(112,58){\rot{-33}\sx{1.3}{$y\!=\! \mathrm{mori}(x)$}\ero}
\end{picture}\end{document}

References

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:13, 1 December 2018Thumbnail for version as of 06:13, 1 December 20182,366 × 572 (139 KB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata