File:Vladi03.jpg
Original file (1,750 × 1,291 pixels, file size: 559 KB, MIME type: image/jpeg)
Complex map of asymptotic approximation lima of natural tetration and its agreement fifi.
Top:
$u\!+\!\mathrm i v = \mathrm{fima}(x+\mathrm i y)$
Bottom:
levels $D=1,2,4,6,8,10,12,14 ~ ~ $ are drawn. Level $D=1$ is drawn with thick line.
Usage: this is figure 14.9 of the book Суперфункции (2014, In Russian) [1]; the English version is in preparation in 2015.
First time published in the Vladikavkaz Matehmatical Journal [2].
C++ generator of the top map
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "superex.cin"
#include "fsexp.cin"
#include "conto.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
z_type Zo=z_type(.31813150520476413, 1.3372357014306895);
z_type Zc=z_type(.31813150520476413,-1.3372357014306895);
int M=400,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
//FILE *o;o=fopen("figfima.eps","w");ado(o,0,0,202,92);
FILE *o;o=fopen("vladi03a.eps","w");ado(o,202,82);
fprintf(o,"101 11 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-8.+.04*m;
DO(n,N1) Y[n]= 0.+.025*n;
for(m=-8;m<9;m++){M(m,0)L(m,5)}
for(n= 0;n<6;n++){M(-8,n)L(8,n)}
fprintf(o,".006 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999; }
//z_type F[M1*N1];
z_type F[81002];
DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x);
DO(n,N1){y=Y[n]; z=z_type(x,y);
c=fima(z);
p=Re(c); q=Im(c);
if(p>-9 && p<9) g[m*N1+n]=p;
if(q>-9 && q<9) f[m*N1+n]=q;
}}
p=1;q=.5;
conto(o,g,w,v,X,Y,M,N, ( Re(Zo) ),-q,q); fprintf(o,".1 W 1 .5 1 RGB S\n");
conto(o,f,w,v,X,Y,M,N, ( Im(Zo) ),-q,q); fprintf(o,".1 W .2 1 .4 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (-Im(Zo) ),-q,q); fprintf(o,".1 W .4 1 .2 RGB S\n");
#include"plofu.cin"
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf vladi03a.eps");
system( "open vladi03a.pdf");// macintosh
//getchar(); system("killall Preview");//macintosh
}
C++ generator of lines at the Second picture
Files ado.cin, conto.cin, fsexp.cin, plodi.cin are required.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) #include <complex> typedef std::complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) //#include "superex.cin" #include "fsexp.cin" #include "conto.cin" int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; //z_type Zo=z_type(.31813150520476413, 1.3372357014306895); //z_type Zc=z_type(.31813150520476413,-1.3372357014306895); int M=400,M1=M+1; int N=125,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array //FILE *o;o=fopen("figfimaE.eps","w");ado(o,0,0,202,70); FILE *o;o=fopen("vladi03b.eps","w");ado(o,202,72); fprintf(o,"101 11 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-8.+.04*m; DO(n,N1) Y[n]= 0.+.04*n; for(m=-8;m<9;m++) {M( m,0)L(m,5)} for(n= 0;n<6;n++) {M(-8,n)L(8,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; f[m*N1+n]=9999; } DO(m,M1){x=X[m]; printf("50 run at x=%6.3f\n",x); DO(n,N1){y=Y[n]; z=z_type(x,y); c=fima(z)-exp(fima(z-1.)); p=Re(-log(c))/log(10.); if(p>-999 && p<999) g[m*N1+n]=p; }} #include"plodi.cin" fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf vladi03b.eps"); system( "open vladi03b.pdf"); // for linux //getchar(); system("killall Preview");// for macintosh }
Latex combiner
\documentclass[12pt]{article}
\usepackage{graphicx}
\usepackage{rotating}
\usepackage{geometry}
\paperwidth 420px
\paperheight 310px
\topmargin -112pt
\oddsidemargin -90pt
\pagestyle{empty}
\begin{document}
\newcommand \ing {\includegraphics}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \fimax {
\put(17,52){\sx{.44}{$y$}}
%\put(17,55){\sx{.58}{$5$}}
\put(17,43){\sx{.44}{$4$}}
\put(17,33){\sx{.44}{$3$}}
\put(17,23){\sx{.44}{$2$}}
\put(17,13){\sx{.44}{$1$}}
\put(17,03){\sx{.44}{$0$}}
%\put(12, 5){\sx{.58}{$-1$}}
\put(26,0){\sx{.44}{$-7$}}
\put(36,0){\sx{.44}{$-6$}}
\put(46,0){\sx{.44}{$-5$}}
\put(56,0){\sx{.44}{$-4$}}
\put(66,0){\sx{.44}{$-3$}}
\put(76,0){\sx{.44}{$-2$}}
\put(86,0){\sx{.44}{$-1$}}
\put( 99,0){\sx{.44}{$0$}}
\put(109,0){\sx{.44}{$1$}}
\put(119,0){\sx{.44}{$2$}}
\put(129,0){\sx{.44}{$3$}}
\put(139,0){\sx{.44}{$4$}}
\put(149,0){\sx{.44}{$5$}}
\put(159,0){\sx{.44}{$6$}}
\put(169,0){\sx{.44}{$7$}}
\put(178,0){\sx{.44}{$x$}}
}
\hskip -40pt
\sx{2.55}{\begin{picture}(200,60)
%\put(0,6){\includegraphics{figfima}}
\put(-1,-7){\includegraphics{vladi03a}}
\multiput(27,38)(22.7,4){4}{\sx{.4}{\rot{-76} $v\!=\!\Im(L)$\ero}}
\multiput(38,41)(22.7,4){4}{\sx{.4}{\rot{-76} $u\!=\!\Re(L)$\ero}}
\multiput(77,15)(44.5,10.6){3}{\sx{.4}{\rot{0} $u\!=\!0$\ero}}
\multiput(89,16.4)(44.5,10.6){2}{\sx{.4}{\rot{0} $v\!=\!1$\ero}}
\fimax
\end{picture}}
\hskip -40pt
\sx{2.55}{\begin{picture}(200,62)
%\put(0,6){\includegraphics{figfimaE}}
\put(-1,-7){\includegraphics{vladi03b}}
\fimax
\put( 64,48){\sx{.6}{$D_{\rm fifi}>14$}}
\put(151,8){\sx{.6}{$D_{\rm fifi}\!<\!1$}}
\end{picture}}
\end{document}
References
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑ http://mizugadro.mydns.jp/PAPERS/2010vladie.pdf D.Kouznetsov. Superexponential as special function. Vladikavkaz Mathematical Journal, 2010, v.12, issue 2, p.31-45. Figure 4.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,750 × 1,291 (559 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.