Difference between revisions of "File:Logic5T.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Iteration]] of the [[Logistic operator]] $T(z)=5\, z\, (1\!-\!z)$, |
||
− | Importing image file |
||
+ | |||
+ | $y\!=\!T^n(x)$ |
||
+ | |||
+ | versus $x$ for various values of $n$ by |
||
+ | <ref> |
||
+ | http://www.springerlink.com/content/u712vtp4122544x4 , DOI 10.3103/S0027134910020049 <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf , reprint, English version<br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010logistir.pdf , reprint, Russian version<br> |
||
+ | D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31) |
||
+ | </ref>. |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | // Need also [[ado.cin]] and [[efjh.cin]] |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "efjh.cin" |
||
+ | |||
+ | DB LO(DB x){ return 5.*x*(1.-x);} |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | FILE *o;o=fopen("logic5.eps","w");ado(o,130,130); |
||
+ | fprintf(o,"2 2 translate\n 100 100 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | M(0,0)L(1.25,0)L(1.25,1.25)L(0,1.25) |
||
+ | fprintf(o,"C .003 W 0 0 0 RGB S\n"); |
||
+ | M(0,.25)L(1.25,.25) M(.25,0)L(.25,1.25) |
||
+ | M(0,.50)L(1.25,.50) M(.50,0)L(.50,1.25) |
||
+ | M(0,.75)L(1.25,.75) M(.75,0)L(.75,1.25) |
||
+ | M(0,1.0)L(1.25,1.0) M(1.0,0)L(1.0,1.25) |
||
+ | fprintf(o,".001 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | maq(5.); |
||
+ | |||
+ | M(0,0) L(1.25,1.25)fprintf(o,".006 W 1 .3 1 RGB S\n"); |
||
+ | M(0,0) DO(m,1521){x=.001*(m+.9); y=LO(x) ; if(y>=-.1 && y<=1.5)L(x,y) else break;}fprintf(o,".006 W 0 1 1 RGB S\n"); |
||
+ | M(0,0) DO(m,1521){x=.001*(m+.9); y=LO(LO(x)) ; if(y>=-.1 && y<=1.5)L(x,y) else break;}fprintf(o,".006 W 0 1 1 RGB S\n"); |
||
+ | |||
+ | M(0,0) L(1.25,1.25) fprintf(o,".001 W 0 0 0 RGB S\n"); |
||
+ | for(k=1;k<21;k+=1){ M(0,0) DO(m,1521){x=.001*(m+.9);c=F(.1*k+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;} } |
||
+ | fprintf(o,".001 W 0 0 .5 RGB S\n"); |
||
+ | |||
+ | M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-1.+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;}fprintf(o,".006 W 1 .5 0 RGB S\n"); |
||
+ | M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-2.+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;}fprintf(o,".006 W 1 .5 0 RGB S\n"); |
||
+ | |||
+ | for(k=1;k<21;k+=1){ M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-.1*k+E(x)); y=Re(c);t=Im(c);if(y>0 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;} } |
||
+ | fprintf(o,".001 W .5 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf logic5.eps"); |
||
+ | system( "open logic5.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of curves== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 1308pt |
||
+ | \paperheight 1314pt |
||
+ | \topmargin -100pt |
||
+ | \oddsidemargin -74pt |
||
+ | \textwidth 1540pt |
||
+ | \textheight 1740pt |
||
+ | \usepackage{graphicx} |
||
+ | %\usepackage{overcite} |
||
+ | %\usepackage{hyperref} |
||
+ | %\usepackage{amssymb} |
||
+ | %\usepackage{wrapfig} |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | %\setlength{\parskip}{2mm} |
||
+ | %\setlength{\parindent}{0mm} |
||
+ | \newcommand \ds {\displaystyle} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rme {\mathrm{e}} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \rmi {\mathrm{i}} |
||
+ | \newcommand \eL[1] {\iL{#1} \end{eqnarray}} |
||
+ | \newcommand \rf[1] {(\ref{#1})} |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \sx{10}{\begin{picture}(130,131) |
||
+ | \put(3,4){\ing{logic5}} |
||
+ | \put(0,128){\sx{.7}{$y$}} |
||
+ | \put(0,103){\sx{.7}{$1$}} |
||
+ | \put(0,54){\sx{.7}{$\frac{1}{2}$}} |
||
+ | \put(0,3){\sx{.7}{$0$}} |
||
+ | \put(25.2,1){\sx{.5}{$1/4$}} |
||
+ | \put(50.4,1){\sx{.5}{$1/2$}} |
||
+ | \put(75.6,1){\sx{.5}{$3/4$}} |
||
+ | \put(104,.5){\sx{.6}{$1$}} |
||
+ | \put(127,1){\sx{.6}{$x$}} |
||
+ | \put( 9.9,62){\sx{.7}{\rot{86}$n\!=\!2$\ero}} |
||
+ | \put( 19.5,62){\sx{.7}{\rot{73}$n\!=\!1$\ero}} |
||
+ | \put( 53.3,93.5){\sx{.64}{\rot{50}$n\!=\!0.5$\ero}} |
||
+ | \put( 60.3,92.5){\sx{.64}{\rot{49}$n\!=\!0.4$\ero}} |
||
+ | \put( 67.6,92.5){\sx{.64}{\rot{47}$n\!=\!0.3$\ero}} |
||
+ | \put( 73.9,90,4){\sx{.64}{\rot{46}$n\!=\!0.2$\ero}} |
||
+ | \put( 81,88,4){\sx{.65}{\rot{45}$n\!=\!0.1$\ero}} |
||
+ | \put( 88.6,87){\sx{.7}{\rot{44}$n\!=\!0$\ero}} |
||
+ | \put( 92,81.5){\sx{.6}{\rot{43}$n\!=\!-0.1$\ero}} |
||
+ | \put( 96,76.2){\sx{.6}{\rot{43}$n\!=\!-0.2$\ero}} |
||
+ | \put(101,71.5){\sx{.6}{\rot{43}$n\!=\!-0.3$\ero}} |
||
+ | \put(103.4,58){\sx{.6}{\rot{42}$n\!=\!-0.5$\ero}} |
||
+ | \put(108,32.4){\sx{.7}{\rot{32}$n\!=\!-1$\ero}} |
||
+ | \put(106.4,9.4){\sx{.7}{\rot{8}$n\!=\!-2$\ero}} |
||
+ | \end{picture}} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | [[Category:Logistic operator]] |
||
+ | [[Category:Iteration]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Latex]] |
Latest revision as of 08:42, 1 December 2018
Iteration of the Logistic operator $T(z)=5\, z\, (1\!-\!z)$,
$y\!=\!T^n(x)$
versus $x$ for various values of $n$ by [1].
C++ generator of curves
// Need also ado.cin and efjh.cin
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include <complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "ado.cin"
#include "efjh.cin"
DB LO(DB x){ return 5.*x*(1.-x);}
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
FILE *o;o=fopen("logic5.eps","w");ado(o,130,130);
fprintf(o,"2 2 translate\n 100 100 scale\n");
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
M(0,0)L(1.25,0)L(1.25,1.25)L(0,1.25)
fprintf(o,"C .003 W 0 0 0 RGB S\n");
M(0,.25)L(1.25,.25) M(.25,0)L(.25,1.25)
M(0,.50)L(1.25,.50) M(.50,0)L(.50,1.25)
M(0,.75)L(1.25,.75) M(.75,0)L(.75,1.25)
M(0,1.0)L(1.25,1.0) M(1.0,0)L(1.0,1.25)
fprintf(o,".001 W 0 0 0 RGB S\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
maq(5.);
M(0,0) L(1.25,1.25)fprintf(o,".006 W 1 .3 1 RGB S\n");
M(0,0) DO(m,1521){x=.001*(m+.9); y=LO(x) ; if(y>=-.1 && y<=1.5)L(x,y) else break;}fprintf(o,".006 W 0 1 1 RGB S\n");
M(0,0) DO(m,1521){x=.001*(m+.9); y=LO(LO(x)) ; if(y>=-.1 && y<=1.5)L(x,y) else break;}fprintf(o,".006 W 0 1 1 RGB S\n");
M(0,0) L(1.25,1.25) fprintf(o,".001 W 0 0 0 RGB S\n");
for(k=1;k<21;k+=1){ M(0,0) DO(m,1521){x=.001*(m+.9);c=F(.1*k+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;} }
fprintf(o,".001 W 0 0 .5 RGB S\n");
M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-1.+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;}fprintf(o,".006 W 1 .5 0 RGB S\n");
M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-2.+E(x)); y=Re(c);t=Im(c);if(y>=-.1 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;}fprintf(o,".006 W 1 .5 0 RGB S\n");
for(k=1;k<21;k+=1){ M(0,0) DO(m,1521){x=.001*(m+.9);c=F(-.1*k+E(x)); y=Re(c);t=Im(c);if(y>0 && y<1.5 && fabs(t)<1.e-9)L(x,y) else break;} }
fprintf(o,".001 W .5 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf logic5.eps");
system( "open logic5.pdf");
getchar(); system("killall Preview");
}
Latex generator of curves
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 1308pt
\paperheight 1314pt
\topmargin -100pt
\oddsidemargin -74pt
\textwidth 1540pt
\textheight 1740pt
\usepackage{graphicx}
%\usepackage{overcite}
%\usepackage{hyperref}
%\usepackage{amssymb}
%\usepackage{wrapfig}
\usepackage{graphics}
\usepackage{rotating}
%\setlength{\parskip}{2mm}
%\setlength{\parindent}{0mm}
\newcommand \ds {\displaystyle}
\newcommand \sx {\scalebox}
\newcommand \rme {\mathrm{e}}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\newcommand \eL[1] {\iL{#1} \end{eqnarray}}
\newcommand \rf[1] {(\ref{#1})}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\sx{10}{\begin{picture}(130,131)
\put(3,4){\ing{logic5}}
\put(0,128){\sx{.7}{$y$}}
\put(0,103){\sx{.7}{$1$}}
\put(0,54){\sx{.7}{$\frac{1}{2}$}}
\put(0,3){\sx{.7}{$0$}}
\put(25.2,1){\sx{.5}{$1/4$}}
\put(50.4,1){\sx{.5}{$1/2$}}
\put(75.6,1){\sx{.5}{$3/4$}}
\put(104,.5){\sx{.6}{$1$}}
\put(127,1){\sx{.6}{$x$}}
\put( 9.9,62){\sx{.7}{\rot{86}$n\!=\!2$\ero}}
\put( 19.5,62){\sx{.7}{\rot{73}$n\!=\!1$\ero}}
\put( 53.3,93.5){\sx{.64}{\rot{50}$n\!=\!0.5$\ero}}
\put( 60.3,92.5){\sx{.64}{\rot{49}$n\!=\!0.4$\ero}}
\put( 67.6,92.5){\sx{.64}{\rot{47}$n\!=\!0.3$\ero}}
\put( 73.9,90,4){\sx{.64}{\rot{46}$n\!=\!0.2$\ero}}
\put( 81,88,4){\sx{.65}{\rot{45}$n\!=\!0.1$\ero}}
\put( 88.6,87){\sx{.7}{\rot{44}$n\!=\!0$\ero}}
\put( 92,81.5){\sx{.6}{\rot{43}$n\!=\!-0.1$\ero}}
\put( 96,76.2){\sx{.6}{\rot{43}$n\!=\!-0.2$\ero}}
\put(101,71.5){\sx{.6}{\rot{43}$n\!=\!-0.3$\ero}}
\put(103.4,58){\sx{.6}{\rot{42}$n\!=\!-0.5$\ero}}
\put(108,32.4){\sx{.7}{\rot{32}$n\!=\!-1$\ero}}
\put(106.4,9.4){\sx{.7}{\rot{8}$n\!=\!-2$\ero}}
\end{picture}}
\end{document}
References
- ↑
http://www.springerlink.com/content/u712vtp4122544x4 , DOI 10.3103/S0027134910020049
http://mizugadro.mydns.jp/PAPERS/2010logistie.pdf , reprint, English version
http://mizugadro.mydns.jp/PAPERS/2010logistir.pdf , reprint, Russian version
D.Kouznetsov. Holomorphic extension of the logistic sequence. Moscow University Physics Bulletin, 2010, No.2, p.91-98. (Russian version: p.24-31)
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:13, 1 December 2018 | 2,714 × 2,727 (1.92 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.