Difference between revisions of "File:Sinplo1t100.jpg"

From TORI
Jump to navigation Jump to search
(Importing image file)
 
 
Line 1: Line 1:
  +
[[Iterate]]s of function [[sin]] of real argument, [[explicit plot]]
Importing image file
 
  +
  +
$y=\sin^n(x)=\mathrm{SuSin}\big(n+\mathrm{AuSin}(x)\big)$
  +
  +
for various real values of number $n$ of iterate.
  +
  +
For the evaluation at non-integer $n$, the representation through the superfunction [[SuSin]] and the Abel function [[AuSin]] are used.
  +
  +
Example:
  +
  +
$\sin^{1/2}(\pi/2)\approx 1.140179476170028$
  +
  +
$\sin^{1/2}(1.140179476170028) \approx 1.000000000000003\approx 1$
  +
  +
At the poor resolution of the screen, the thin curves may be not seen.
  +
For this case, version with thicket curves is loaded as
  +
http://mizugadro.mydns.jp/t/index.php/File:Sinplo2t100.jpg
  +
  +
==[[C++]] generator of curves==
  +
  +
<poem><nomathjax><nowiki>
  +
  +
#include <math.h>
  +
#include <stdio.h>
  +
#include <stdlib.h>
  +
#define DB double
  +
#define DO(x,y) for(x=0;x<y;x++)
  +
using namespace std;
  +
#include<complex>
  +
typedef complex<double> z_type;
  +
#define Re(x) x.real()
  +
#define Im(x) x.imag()
  +
#define I z_type(0.,1.)
  +
  +
#include "ado.cin"
  +
#include "arcsin.cin"
  +
#include "susin.cin"
  +
#include "ausin.cin"
  +
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;
  +
  +
FILE *o;o=fopen("sinplo1.eps","w"); ado(o,318,160);
  +
#define M(x,y) {fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);}
  +
#define L(x,y) {fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);}
  +
  +
fprintf(o,"1 1 translate\n 100 100 scale\n");
  +
fprintf(o,"1 setlinejoin 2 setlinecap\n");
  +
for(m=0;m<4;m++){M(m,0) L(m,M_PI/2.) }
  +
for(n=0;n<2;n++){M( 0,n) L(M_PI,n)}
  +
fprintf(o,".004 W 0 0 0 RGB S\n");
  +
M(M_PI/2.,0); L(M_PI/2.,M_PI/2)
  +
M(M_PI,0); L(M_PI,M_PI/2)
  +
M(0,M_PI/2.); L(M_PI,M_PI/2)
  +
fprintf(o,".001 W 0 0 0 RGB S\n");
  +
M(0,0) L(M_PI/2.,M_PI/2.)
  +
fprintf(o,".007 W 0 1 1 RGB S\n");
  +
M(0,0) L(M_PI/2., M_PI/2.) L(M_PI,0)
  +
fprintf(o,".001 W 0 0 0 RGB S\n");
  +
  +
fprintf(o,"1 setlinejoin 1 setlinecap\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); L(y,x); } fprintf(o,".007 W 0 1 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(x)); L(y,x); } fprintf(o,".007 W 0 1 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(x))); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(sin(x)))); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(sin(sin(x)))));L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n, 10)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n, 20)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n,100)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); L(x,y); } fprintf(o,".007 W 0 1 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(x)); L(x,y); } fprintf(o,".007 W 0 1 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(x))); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(sin(x)))); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(sin(sin(x)))));L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n, 10)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n, 20)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n,100)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
  +
  +
for(n=1;n<21;n++){
  +
M(0,0) DO(m,158){ x=.01*(m+.1); z=x; c=ausin(z); c=susin(.1*n+c); y=Re(c);
  +
if(abs(Im(c))>1.e-9) break; if(y>-1. && y<4.) L(y,x) else break; }
  +
fprintf(o,".001 W 0 0 0 RGB S\n");
  +
}
  +
  +
for(n=1;n<21;n++){
  +
M(0,0) DO(m,315){ x=.01*(m+.1); z=x; c=ausin(z); c=susin(.1*n+c); y=Re(c);
  +
if(abs(Im(c))>1.e-9) break; if(y>-1. && y<4.) L(x,y) else break; }
  +
fprintf(o,".001 W 0 0 0 RGB S\n");
  +
}
  +
  +
fprintf(o,"showpage\n");
  +
fprintf(o,"%c%cTrailer\n",'%','%');
  +
fclose(o);
  +
system("epstopdf sinplo1.eps");
  +
system( "open sinplo1.pdf"); //for macintosh
  +
getchar(); system("killall Preview"); // For macintosh
  +
}
  +
  +
</nowiki></nomathjax></poem>
  +
  +
==[[Latex]] generator of labels==
  +
<poem><nomathjax><nowiki>
  +
\documentclass[12pt]{article}
  +
\usepackage{geometry}
  +
\usepackage{graphics}
  +
\usepackage{rotating}
  +
\paperwidth 3230pt
  +
\paperheight 1700pt
  +
\topmargin -100pt
  +
\oddsidemargin -72pt
  +
\textwidth 3200pt
  +
\textheight 1700pt
  +
\newcommand \sx {\scalebox}
  +
\newcommand \rot {\begin{rotate}}
  +
\newcommand \ero {\end{rotate}}
  +
\pagestyle{empty}
  +
\begin{document}
  +
\sx{10}{\begin{picture}(328,168)
  +
\put(4,9){\includegraphics{sinplo1}}
  +
\put(-1.6,162){\sx{1.}{$y$}}
  +
\put(-1.6,106){\sx{1.}{$1$}}
  +
\put(-1.6, 06){\sx{1.}{$0$}}
  +
%\put(-7, 06){\sx{1.2}{$-2$}}
  +
\put(3,0){\sx{1.}{$0$}}
  +
\put(103,0){\sx{1.}{$1$}}
  +
\put(153,0){\sx{1.}{$\pi/2$}}
  +
\put(203,0){\sx{1.}{$2$}}
  +
\put(303,0){\sx{1.}{$3$}}
  +
\put(315,0){\sx{1.}{$x$}}
  +
\put(24.6,115){\sx{.8}{\rot{89}$n\!=\!-100$\ero}}
  +
\put(42.6,115){\sx{.8}{\rot{89}$n\!=\!-20$\ero}}
  +
\put(53,115){\sx{.8}{\rot{87}$n\!=\!-10$\ero}}
  +
\put(67,115){\sx{.8}{\rot{85}$n\!= -5$\ero}}
  +
%\put(70,115){\sx{.8}{\rot{82}$n\!=\!-4$\ero}}
  +
\put(77,115){\sx{.8}{\rot{82}$n\!=\!-3$\ero}}
  +
\put(84.3,115){\sx{.8}{\rot{79}$n\!=\!-2$\ero}}
  +
\put(94,112){\sx{.8}{\rot{68}$n\!=\!-1$\ero}}
  +
\put(123.4,134){\sx{.8}{\rot{63}$n\!=\! -0.2$\ero}}
  +
\put(146,147){\sx{.9}{\rot{45}$n\!=\!0$\ero}}
  +
\put(142,140){\sx{.8}{\rot{10}$n\!= 0.1$\ero}}
  +
\put(140,131.6){\sx{.8}{\rot{10}$n\!= 0.2$\ero}}
  +
\put(139,122){\sx{.8}{\rot{9}$n\!= 0.4$\ero}}
  +
\put(110,95){\sx{.8}{\rot{21}$n\!= 1$\ero}}
  +
\put(110,84.3){\sx{.8}{\rot{13}$n\!= 2$\ero}}
  +
\put(110,77.3){\sx{.8}{\rot{8}$n\!= 3$\ero}}
  +
%\put(110,72){\sx{.8}{\rot{6}$n\!= 4$\ero}}
  +
\put(110,67){\sx{.8}{\rot{6}$n\!= 5$\ero}}
  +
\put(110,53){\sx{.8}{$n\!=\! 10$}}
  +
\put(110,42.3){\sx{.8}{$n\!= 20$}}
  +
\put(110,24.3){\sx{.8}{$n\!=\!100$}}
  +
\end{picture}}
  +
\end{document}
  +
</nowiki></nomathjax></poem>
  +
  +
[[Category:Super sin]]
  +
[[Category:sin]]
  +
[[Category:SuSin]]
  +
[[Category:AuSin]]
  +
[[Category:Super sin]]
  +
[[Category:Iterate]]
  +
[[Category:Superfunction]]
  +
[[Category:Abel function]]
  +
[[Category:Explicit plot]]
  +
[[Category:C++]]
  +
[[Category:Latex]]
  +
[[Category:Book]]
  +
[[Category:BookPlot]]

Latest revision as of 08:51, 1 December 2018

Iterates of function sin of real argument, explicit plot

$y=\sin^n(x)=\mathrm{SuSin}\big(n+\mathrm{AuSin}(x)\big)$

for various real values of number $n$ of iterate.

For the evaluation at non-integer $n$, the representation through the superfunction SuSin and the Abel function AuSin are used.

Example:

$\sin^{1/2}(\pi/2)\approx 1.140179476170028$

$\sin^{1/2}(1.140179476170028) \approx 1.000000000000003\approx 1$

At the poor resolution of the screen, the thin curves may be not seen. For this case, version with thicket curves is loaded as http://mizugadro.mydns.jp/t/index.php/File:Sinplo2t100.jpg

C++ generator of curves



#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
using namespace std;
#include<complex>
typedef complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)

#include "ado.cin"
#include "arcsin.cin"
#include "susin.cin"
#include "ausin.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d;

FILE *o;o=fopen("sinplo1.eps","w"); ado(o,318,160);
#define M(x,y) {fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);}
#define L(x,y) {fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);}

fprintf(o,"1 1 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(m=0;m<4;m++){M(m,0) L(m,M_PI/2.) }
for(n=0;n<2;n++){M( 0,n) L(M_PI,n)}
fprintf(o,".004 W 0 0 0 RGB S\n");
M(M_PI/2.,0); L(M_PI/2.,M_PI/2)
M(M_PI,0); L(M_PI,M_PI/2)
M(0,M_PI/2.); L(M_PI,M_PI/2)
fprintf(o,".001 W 0 0 0 RGB S\n");
M(0,0) L(M_PI/2.,M_PI/2.)
fprintf(o,".007 W 0 1 1 RGB S\n");
M(0,0) L(M_PI/2., M_PI/2.) L(M_PI,0)
fprintf(o,".001 W 0 0 0 RGB S\n");

fprintf(o,"1 setlinejoin 1 setlinecap\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); L(y,x); } fprintf(o,".007 W 0 1 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(x)); L(y,x); } fprintf(o,".007 W 0 1 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(x))); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(sin(x)))); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(sin(sin(sin(sin(x)))));L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n, 10)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n, 20)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,158){x=.01*(m+.1);y=sin(x); DO(n,100)y=sin(y); L(y,x); } fprintf(o,".004 W 0 0 1 RGB S\n");

M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); L(x,y); } fprintf(o,".007 W 0 1 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(x)); L(x,y); } fprintf(o,".007 W 0 1 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(x))); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(sin(x)))); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(sin(sin(sin(sin(x)))));L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n, 10)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n, 20)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");
M(0,0) DO(m,315){x=.01*(m+.1);y=sin(x); DO(n,100)y=sin(y); L(x,y); } fprintf(o,".004 W 0 0 1 RGB S\n");

for(n=1;n<21;n++){
        M(0,0) DO(m,158){ x=.01*(m+.1); z=x; c=ausin(z); c=susin(.1*n+c); y=Re(c);
        if(abs(Im(c))>1.e-9) break; if(y>-1. && y<4.) L(y,x) else break; }
        fprintf(o,".001 W 0 0 0 RGB S\n");
        }

for(n=1;n<21;n++){
        M(0,0) DO(m,315){ x=.01*(m+.1); z=x; c=ausin(z); c=susin(.1*n+c); y=Re(c);
        if(abs(Im(c))>1.e-9) break; if(y>-1. && y<4.) L(x,y) else break; }
        fprintf(o,".001 W 0 0 0 RGB S\n");
        }

fprintf(o,"showpage\n");
fprintf(o,"%c%cTrailer\n",'%','%');
fclose(o);
      system("epstopdf sinplo1.eps");
      system( "open sinplo1.pdf"); //for macintosh
      getchar(); system("killall Preview"); // For macintosh
}

Latex generator of labels


\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphics}
\usepackage{rotating}
\paperwidth 3230pt
\paperheight 1700pt
\topmargin -100pt
\oddsidemargin -72pt
\textwidth 3200pt
\textheight 1700pt
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\pagestyle{empty}
\begin{document}
\sx{10}{\begin{picture}(328,168)
\put(4,9){\includegraphics{sinplo1}}
\put(-1.6,162){\sx{1.}{$y$}}
\put(-1.6,106){\sx{1.}{$1$}}
\put(-1.6, 06){\sx{1.}{$0$}}
%\put(-7, 06){\sx{1.2}{$-2$}}
\put(3,0){\sx{1.}{$0$}}
\put(103,0){\sx{1.}{$1$}}
\put(153,0){\sx{1.}{$\pi/2$}}
\put(203,0){\sx{1.}{$2$}}
\put(303,0){\sx{1.}{$3$}}
\put(315,0){\sx{1.}{$x$}}
\put(24.6,115){\sx{.8}{\rot{89}$n\!=\!-100$\ero}}
\put(42.6,115){\sx{.8}{\rot{89}$n\!=\!-20$\ero}}
\put(53,115){\sx{.8}{\rot{87}$n\!=\!-10$\ero}}
\put(67,115){\sx{.8}{\rot{85}$n\!= -5$\ero}}
%\put(70,115){\sx{.8}{\rot{82}$n\!=\!-4$\ero}}
\put(77,115){\sx{.8}{\rot{82}$n\!=\!-3$\ero}}
\put(84.3,115){\sx{.8}{\rot{79}$n\!=\!-2$\ero}}
\put(94,112){\sx{.8}{\rot{68}$n\!=\!-1$\ero}}
\put(123.4,134){\sx{.8}{\rot{63}$n\!=\! -0.2$\ero}}
\put(146,147){\sx{.9}{\rot{45}$n\!=\!0$\ero}}
\put(142,140){\sx{.8}{\rot{10}$n\!= 0.1$\ero}}
\put(140,131.6){\sx{.8}{\rot{10}$n\!= 0.2$\ero}}
\put(139,122){\sx{.8}{\rot{9}$n\!= 0.4$\ero}}
\put(110,95){\sx{.8}{\rot{21}$n\!= 1$\ero}}
\put(110,84.3){\sx{.8}{\rot{13}$n\!= 2$\ero}}
\put(110,77.3){\sx{.8}{\rot{8}$n\!= 3$\ero}}
%\put(110,72){\sx{.8}{\rot{6}$n\!= 4$\ero}}
\put(110,67){\sx{.8}{\rot{6}$n\!= 5$\ero}}
\put(110,53){\sx{.8}{$n\!=\! 10$}}
\put(110,42.3){\sx{.8}{$n\!= 20$}}
\put(110,24.3){\sx{.8}{$n\!=\!100$}}
\end{picture}}
\end{document}

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current06:14, 1 December 2018Thumbnail for version as of 06:14, 1 December 20184,469 × 2,352 (1.31 MB)Maintenance script (talk | contribs)Importing image file

There are no pages that use this file.

Metadata