Difference between revisions of "File:Sqrt2q2map600.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of the half iterate of exponent to base $\sqrt{2}$ regular at its lowest fixed point. |
||
− | Importing image file |
||
+ | |||
+ | $u\!+\!\mathrm i v= \exp_{\sqrt{2},\mathrm d}^{~ 1/2}(x\!+\!\mathrm i y)$ |
||
+ | |||
+ | This function is expressed through [[tetration]] and [[arctetration]] to base $\sqrt{2}$: |
||
+ | |||
+ | $\displaystyle |
||
+ | \exp_{\sqrt{2},\mathrm d}^{~ 1/2}(z)= \mathrm{tet}_{\sqrt{2}}\left( \frac{1}{2}+\mathrm{ate}_{\sqrt{2}}(z) \right)$ |
||
+ | |||
+ | Usage: this is figure 16.8 of the book [[Суперфункции]] (2014, In Russian) <ref> |
||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. [[Lambert Academic Publishing]], 2014. |
||
+ | </ref>; the English version is in preparation in 2015. |
||
+ | |||
+ | The same map appears also at the top left picture of figure 6 of article |
||
+ | <ref> |
||
+ | http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html <br> |
||
+ | http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf offprint |
||
+ | D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756. |
||
+ | </ref>. |
||
+ | |||
+ | |||
+ | ==Refereces== |
||
+ | <references/> |
||
+ | |||
+ | ==[[C++]] generator of the map== |
||
+ | Files [[ado.cin]], [[conto.cin]], and |
||
+ | |||
+ | [[sqrt2f21e.cin]], |
||
+ | [[sqrt2f21l.cin]], |
||
+ | |||
+ | or |
||
+ | |||
+ | [[sqrt2f23e.cin]], |
||
+ | [[sqrt2f23l.cin]] |
||
+ | |||
+ | should be loaded in order to compile the code below. |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | |||
+ | // #include "uq2e.cin" |
||
+ | // #include "uq2L.cin" |
||
+ | // #include "f43E.cin" |
||
+ | // #include "f43L.cin" |
||
+ | //#include "sqrt2f23e.cin" |
||
+ | //#include "sqrt2f23l.cin" |
||
+ | #include "sqrt2f21e.cin" |
||
+ | #include "sqrt2f21l.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | int M=211,M1=M+1; |
||
+ | int N=201,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("sqrt26a.eps","w"); ado(o,214,212); |
||
+ | fprintf(o,"112 110 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]=-11+.1*(m-.5); |
||
+ | DO(n,N1) Y[n]=-10+.1*(n-.5); |
||
+ | for(m=-10;m<11;m++) {M(m,-10)L(m,10)} |
||
+ | for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | //fprintf(o,"/adobe-Roman findfont 1 scalefont setfont\n"); |
||
+ | // for(m=-8;m<0;m+=2) {M(-11.2,m-.3) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m= 0;m<9;m+=2) {M(-10.7,m-.3) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m=-8;m<0;m+=4) {M(m-.6,-10.8) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m= 0;m<9;m+=4) {M(m-.3,-10.8) fprintf(o,"(%1d)s\n",m);} |
||
+ | |||
+ | // fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n"); |
||
+ | //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n"); |
||
+ | // M(-10.7, 9.5) fprintf(o,"(y)s\n"); |
||
+ | // M( 9.6,-10.8) fprintf(o,"(x)s\n"); |
||
+ | // M(-11,0)L(10.1,0) M(0,-11)L(0,10.1) fprintf(o,".01 W 1 0 1 RGB S\n"); |
||
+ | // z_type tm,tp,F[M1*N1];; |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; |
||
+ | DO(n,N1){y=Y[n]; z=z_type(x,y); |
||
+ | if(abs(z-10.)>2.9) |
||
+ | { |
||
+ | // c=UQ2E(z) ; d=uq2LA(c); |
||
+ | // c=UQ2L(z); c=UQ2E(c+.5); |
||
+ | // c=F43L(z); c=F43E(c+.5); |
||
+ | c=F23L(z); c=F23E(c+.5); |
||
+ | // p=abs((z-d)/(z+d)); p=-log(p)/log(10.); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-99 && p<99 && fabs(p)>1.e-12) g[m*N1+n]=p; |
||
+ | if(q>-99 && q<99 && fabs(q)>1.e-12) f[m*N1+n]=q; |
||
+ | }}} |
||
+ | p=2; q=1; |
||
+ | #include "plofu.cin" |
||
+ | |||
+ | // p=1.e-15; |
||
+ | //for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.16f\n",q, Re(uq2e(z)) ); } |
||
+ | //M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n"); |
||
+ | |||
+ | /* |
||
+ | y=9.064720284; |
||
+ | M(.89, y)L(10.1, y) |
||
+ | M(.89,-y)L(10.1,-y) |
||
+ | M(4,0)L( 10,0)fprintf(o,".15 W 0 0 0 RGB [.2 .2] 0 setdash S\n"); |
||
+ | */ |
||
+ | //The cuts live in a separate file, but one will be more stressed: |
||
+ | M(4,0)L( 10.1,0) |
||
+ | fprintf(o,".1 W 1 1 1 RGB S\n"); |
||
+ | DO(n,28){M(4+.3*n,0)L(4+.3*(n+.5),0)} fprintf(o,".13 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf sqrt26a.eps"); |
||
+ | system( "open sqrt26a.pdf"); // for LINUX |
||
+ | // getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[C++]] generator of the cut lines== |
||
+ | Files [[ado.cin]], |
||
+ | [[sqrt2f21e.cin]], |
||
+ | [[sqrt2f21l.cin]] |
||
+ | should be loaded in order to compile the code below. |
||
+ | <poem><nomathjax><nowiki> |
||
+ | |||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | |||
+ | // #include "uq2e.cin" |
||
+ | // #include "uq2L.cin" |
||
+ | // #include "f43E.cin" |
||
+ | // #include "f43L.cin" |
||
+ | |||
+ | // #include "f23E.cin" |
||
+ | #include "sqrt2f21L.cin" |
||
+ | |||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; |
||
+ | int M= 60,M1=M+1; |
||
+ | int N=201,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | FILE *o;o=fopen("sqrt26cuts.eps","w"); ado(o,214,212); |
||
+ | fprintf(o,"112 110 translate\n 10 10 scale\n"); |
||
+ | DO(m,M1) X[m]= 4.2 +.1*(m-.5); |
||
+ | DO(n,N1) Y[n]=-10+.1*(n-.5); |
||
+ | for(m=-10;m<11;m++) {M(m,-10)L(m,10)} |
||
+ | for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,".006 W 0 0 0 RGB S\n"); |
||
+ | // fprintf(o,"/adobe-Roman findfont 1 scalefont setfont\n"); |
||
+ | // for(m=-8;m<0;m+=2) {M(-11.2,m-.3) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m= 0;m<9;m+=2) {M(-10.7,m-.3) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m=-8;m<0;m+=4) {M(m-.6,-10.8) fprintf(o,"(%1d)s\n",m);} |
||
+ | // for(m= 0;m<9;m+=4) {M(m-.3,-10.8) fprintf(o,"(%1d)s\n",m);} |
||
+ | // fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n"); |
||
+ | // //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n"); |
||
+ | // M(-10.7, 9.5) fprintf(o,"(y)s\n"); |
||
+ | // M( 9.6,-10.8) fprintf(o,"(x)s\n"); |
||
+ | // M(-11,0)L(10.1,0) M(0,-11)L(0,10.1) fprintf(o,".01 W 1 0 1 RGB S\n"); |
||
+ | // z_type tm,tp,F[M1*N1];; |
||
+ | DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; |
||
+ | f[m*N1+n]=9999;} |
||
+ | DO(m,M1){x=X[m]; |
||
+ | DO(n,N1){y=Y[n]; |
||
+ | if(fabs(fabs(y)-9.)>.3) |
||
+ | { z=z_type(x,y); |
||
+ | c=F21L(z); |
||
+ | p=Re(c); q=Im(c); |
||
+ | if(p>-99 && p<99) g[m*N1+n]=p; |
||
+ | if(q>-99 && q<99 && fabs(q)>1.e-12) f[m*N1+n]=q; |
||
+ | }}} |
||
+ | //#include "plofu.cin" |
||
+ | |||
+ | conto(o,f,w,v,X,Y,M,N, (0. ), -2,2); // fprintf(o,".05 W 0 .8 0 RGB S\n"); |
||
+ | |||
+ | /* |
||
+ | y=9.064720284; |
||
+ | M(.89, y)L(10.1, y) |
||
+ | M(.89,-y)L(10.1,-y) |
||
+ | M(4,0)L( 10,0) |
||
+ | */ |
||
+ | |||
+ | // fprintf(o,".1 W 0 0 0 RGB [.2 .2] 0 setdash S\n"); |
||
+ | |||
+ | y=9.064720284; |
||
+ | M(.89, y)L(10.1, y) |
||
+ | M(.89,-y)L(10.1,-y) |
||
+ | M(4,0)L( 10,0)fprintf(o,".07 W 0 0 0 RGB [.2 .2] 0 setdash S\n"); |
||
+ | |||
+ | fprintf(o,"[99]0 setdash\n"); |
||
+ | |||
+ | /* |
||
+ | M(2,0)L(-11.2,0)fprintf(o,".1 W 1 1 1 RGB S\n"); |
||
+ | DO(n,36){M(2-.3*n,0)L(2-.3*(n+.5),0)} fprintf(o,".15 W 0 0 0 RGB S\n"); |
||
+ | //M(2,0)L(-11,0)fprintf(o,".15 W 0 0 0 RGB [.2 .2] 0 setdash S\n"); //may cause problems |
||
+ | */ |
||
+ | |||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf sqrt26cuts.eps"); |
||
+ | system( "open sqrt26cuts.pdf"); |
||
+ | // getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] combiner== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \paperwidth 212px |
||
+ | \paperheight 210px |
||
+ | \textwidth 1394px |
||
+ | \textheight 1300px |
||
+ | \topmargin -100px |
||
+ | \oddsidemargin -74px |
||
+ | \usepackage{graphics} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \newcommand \rmi {\mathrm{i}} |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document}\parindent 0pt |
||
+ | |||
+ | \sx{1.}{\begin{picture}(280,203) |
||
+ | %\put(0,0){\ing{exc2cuts}} |
||
+ | %\put(0,0){\ing{figexc2}} |
||
+ | \put(0,0){\ing{sqrt26cuts}} |
||
+ | \put(0,0){\ing{sqrt26a}} |
||
+ | \put(6,207.7){\sx{.7}{$y$}} |
||
+ | \put(6,187.8){\sx{.7}{$8$}} |
||
+ | \put(6,167.8){\sx{.7}{$6$}} |
||
+ | \put(6,147.7){\sx{.7}{$4$}} |
||
+ | \put(6,127.7){\sx{.7}{$2$}} |
||
+ | \put(6,107.7){\sx{.7}{$0$}} |
||
+ | \put(0, 87.7){\sx{.7}{$-2$}} |
||
+ | \put(0, 67.6){\sx{.7}{$-4$}} |
||
+ | \put(0, 47.6){\sx{.7}{$-6$}} |
||
+ | \put(0, 27.5){\sx{.7}{$-8$}} |
||
+ | \put(3, 2){\sx{.7}{$-10$}} |
||
+ | \put( 27,2){\sx{.7}{$-8$}} |
||
+ | \put( 47,2){\sx{.7}{$-6$}} |
||
+ | \put( 67,2){\sx{.7}{$-4$}} |
||
+ | \put( 87,2){\sx{.7}{$-2$}} |
||
+ | \put(111,2){\sx{.7}{$0$}} |
||
+ | \put(131,2){\sx{.7}{$2$}} |
||
+ | \put(151,2){\sx{.7}{$4$}} |
||
+ | \put(171,2){\sx{.7}{$6$}} |
||
+ | \put(191,2){\sx{.7}{$8$}} |
||
+ | \put(210,2){\sx{.7}{$x$}} |
||
+ | %\put( 27,127){\sx{3}{$\exp_{b,2}^{[1/2]}$}} |
||
+ | \put(23,198.6){\sx{.9}{$v\!=\!0$}} |
||
+ | \put(33.7,92){\rot{90}\sx{.9}{$u\!=\!-1.2$}\ero} |
||
+ | \put(59.6,96){\rot{90}\sx{.9}{$u\!=\!-1$}\ero} |
||
+ | \put(102,98){\rot{90}\sx{.9}{$u\!=\!0$}\ero} |
||
+ | \put(122,99){\rot{90}\sx{.9}{$u\!=\!1$}\ero} |
||
+ | \put(136,99){\rot{90}\sx{.9}{$u\!=\!2$}\ero} |
||
+ | %\put(215,207){\sx{.8}{\bf cut}} |
||
+ | \put(195,199){\sx{.8}{\bf cut}} |
||
+ | \put(197,184){\rot{24}{\sx{.78}{\bf cut}}\ero} |
||
+ | \put(204.4,174.4){\rot{40}{\sx{.78}{\bf cut}}\ero} |
||
+ | %\put(215,184){\sx{.8}{\bf cut}} |
||
+ | %\put(215,175){\sx{.8}{\bf cut}} |
||
+ | \put(195,108){\sx{.78}{\bf cut}} |
||
+ | % |
||
+ | \put(87,145){\rot{-44}\sx{.9}{$v\!=\!1$}\ero} |
||
+ | \put(61,122){\rot{-15}\sx{.8}{$v\!=\!0.2$}\ero} |
||
+ | \put(63,108){\sx{.9}{$v\!=\!0$}} |
||
+ | \put(62, 94){\rot{13}\sx{.8}{$v\!=\!-0.2$}\ero} |
||
+ | %\put(215, 42){\sx{.8}{\bf cut}} |
||
+ | %\put(215, 33){\sx{.8}{\bf cut}} |
||
+ | %\put(215, 25){\sx{.8}{\bf cut}} |
||
+ | \put(196,32){\rot{-22}{\sx{.78}{\bf cut}}\ero} |
||
+ | \put(195, 17){\sx{.78}{\bf cut}} |
||
+ | %\put(-23, 17){\sx{1.}{$q\!=0$}} |
||
+ | %\put(215, 10){\sx{.8}{\bf cut}} |
||
+ | \put(23,17){\sx{.9}{$v\!=\!0$}} |
||
+ | \end{picture}} |
||
+ | |||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
+ | [[Category:Base sqrt2]] |
||
+ | [[Category:Sqrt2]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Complex map]] |
||
+ | [[Category:Exp]] |
||
+ | [[Category:Generator]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Tetration]] |
Latest revision as of 08:52, 1 December 2018
Complex map of the half iterate of exponent to base $\sqrt{2}$ regular at its lowest fixed point.
$u\!+\!\mathrm i v= \exp_{\sqrt{2},\mathrm d}^{~ 1/2}(x\!+\!\mathrm i y)$
This function is expressed through tetration and arctetration to base $\sqrt{2}$:
$\displaystyle \exp_{\sqrt{2},\mathrm d}^{~ 1/2}(z)= \mathrm{tet}_{\sqrt{2}}\left( \frac{1}{2}+\mathrm{ate}_{\sqrt{2}}(z) \right)$
Usage: this is figure 16.8 of the book Суперфункции (2014, In Russian) [1]; the English version is in preparation in 2015.
The same map appears also at the top left picture of figure 6 of article [2].
Refereces
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014. - ↑
http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html
http://mizugadro.mydns.jp/PAPERS/2010sqrt2.pdf offprint D.Kouznetsov, H.Trappmann. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, 2010, v.79, p.1727-1756.
C++ generator of the map
or
should be loaded in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
// #include "uq2e.cin"
// #include "uq2L.cin"
// #include "f43E.cin"
// #include "f43L.cin"
//#include "sqrt2f23e.cin"
//#include "sqrt2f23l.cin"
#include "sqrt2f21e.cin"
#include "sqrt2f21l.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M=211,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("sqrt26a.eps","w"); ado(o,214,212);
fprintf(o,"112 110 translate\n 10 10 scale\n");
DO(m,M1) X[m]=-11+.1*(m-.5);
DO(n,N1) Y[n]=-10+.1*(n-.5);
for(m=-10;m<11;m++) {M(m,-10)L(m,10)}
for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
//fprintf(o,"/adobe-Roman findfont 1 scalefont setfont\n");
// for(m=-8;m<0;m+=2) {M(-11.2,m-.3) fprintf(o,"(%1d)s\n",m);}
// for(m= 0;m<9;m+=2) {M(-10.7,m-.3) fprintf(o,"(%1d)s\n",m);}
// for(m=-8;m<0;m+=4) {M(m-.6,-10.8) fprintf(o,"(%1d)s\n",m);}
// for(m= 0;m<9;m+=4) {M(m-.3,-10.8) fprintf(o,"(%1d)s\n",m);}
// fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
//fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
// M(-10.7, 9.5) fprintf(o,"(y)s\n");
// M( 9.6,-10.8) fprintf(o,"(x)s\n");
// M(-11,0)L(10.1,0) M(0,-11)L(0,10.1) fprintf(o,".01 W 1 0 1 RGB S\n");
// z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m];
DO(n,N1){y=Y[n]; z=z_type(x,y);
if(abs(z-10.)>2.9)
{
// c=UQ2E(z) ; d=uq2LA(c);
// c=UQ2L(z); c=UQ2E(c+.5);
// c=F43L(z); c=F43E(c+.5);
c=F23L(z); c=F23E(c+.5);
// p=abs((z-d)/(z+d)); p=-log(p)/log(10.);
p=Re(c); q=Im(c);
if(p>-99 && p<99 && fabs(p)>1.e-12) g[m*N1+n]=p;
if(q>-99 && q<99 && fabs(q)>1.e-12) f[m*N1+n]=q;
}}}
p=2; q=1;
#include "plofu.cin"
// p=1.e-15;
//for(n=-10;n<11;n++) {q=p*n; z=z_type(q,0.); printf("%19.15f %19.16f\n",q, Re(uq2e(z)) ); }
//M(-10,0)L(-2,0)fprintf(o,".04 W 1 0 1 RGB S\n");
/*
y=9.064720284;
M(.89, y)L(10.1, y)
M(.89,-y)L(10.1,-y)
M(4,0)L( 10,0)fprintf(o,".15 W 0 0 0 RGB [.2 .2] 0 setdash S\n");
*/
//The cuts live in a separate file, but one will be more stressed:
M(4,0)L( 10.1,0)
fprintf(o,".1 W 1 1 1 RGB S\n");
DO(n,28){M(4+.3*n,0)L(4+.3*(n+.5),0)} fprintf(o,".13 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf sqrt26a.eps");
system( "open sqrt26a.pdf"); // for LINUX
// getchar(); system("killall Preview"); // For macintosh
}
C++ generator of the cut lines
Files ado.cin, sqrt2f21e.cin, sqrt2f21l.cin should be loaded in order to compile the code below.
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
// #include "uq2e.cin"
// #include "uq2L.cin"
// #include "f43E.cin"
// #include "f43L.cin"
// #include "f23E.cin"
#include "sqrt2f21L.cin"
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd;
int M= 60,M1=M+1;
int N=201,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("sqrt26cuts.eps","w"); ado(o,214,212);
fprintf(o,"112 110 translate\n 10 10 scale\n");
DO(m,M1) X[m]= 4.2 +.1*(m-.5);
DO(n,N1) Y[n]=-10+.1*(n-.5);
for(m=-10;m<11;m++) {M(m,-10)L(m,10)}
for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,".006 W 0 0 0 RGB S\n");
// fprintf(o,"/adobe-Roman findfont 1 scalefont setfont\n");
// for(m=-8;m<0;m+=2) {M(-11.2,m-.3) fprintf(o,"(%1d)s\n",m);}
// for(m= 0;m<9;m+=2) {M(-10.7,m-.3) fprintf(o,"(%1d)s\n",m);}
// for(m=-8;m<0;m+=4) {M(m-.6,-10.8) fprintf(o,"(%1d)s\n",m);}
// for(m= 0;m<9;m+=4) {M(m-.3,-10.8) fprintf(o,"(%1d)s\n",m);}
// fprintf(o,"/Times-Italic findfont 1 scalefont setfont\n");
// //fprintf(o,"/adobe-italic findfont 1 scalefont setfont\n");
// M(-10.7, 9.5) fprintf(o,"(y)s\n");
// M( 9.6,-10.8) fprintf(o,"(x)s\n");
// M(-11,0)L(10.1,0) M(0,-11)L(0,10.1) fprintf(o,".01 W 1 0 1 RGB S\n");
// z_type tm,tp,F[M1*N1];;
DO(m,M1)DO(n,N1){ g[m*N1+n]=9999;
f[m*N1+n]=9999;}
DO(m,M1){x=X[m];
DO(n,N1){y=Y[n];
if(fabs(fabs(y)-9.)>.3)
{ z=z_type(x,y);
c=F21L(z);
p=Re(c); q=Im(c);
if(p>-99 && p<99) g[m*N1+n]=p;
if(q>-99 && q<99 && fabs(q)>1.e-12) f[m*N1+n]=q;
}}}
//#include "plofu.cin"
conto(o,f,w,v,X,Y,M,N, (0. ), -2,2); // fprintf(o,".05 W 0 .8 0 RGB S\n");
/*
y=9.064720284;
M(.89, y)L(10.1, y)
M(.89,-y)L(10.1,-y)
M(4,0)L( 10,0)
*/
// fprintf(o,".1 W 0 0 0 RGB [.2 .2] 0 setdash S\n");
y=9.064720284;
M(.89, y)L(10.1, y)
M(.89,-y)L(10.1,-y)
M(4,0)L( 10,0)fprintf(o,".07 W 0 0 0 RGB [.2 .2] 0 setdash S\n");
fprintf(o,"[99]0 setdash\n");
/*
M(2,0)L(-11.2,0)fprintf(o,".1 W 1 1 1 RGB S\n");
DO(n,36){M(2-.3*n,0)L(2-.3*(n+.5),0)} fprintf(o,".15 W 0 0 0 RGB S\n");
//M(2,0)L(-11,0)fprintf(o,".15 W 0 0 0 RGB [.2 .2] 0 setdash S\n"); //may cause problems
*/
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf sqrt26cuts.eps");
system( "open sqrt26cuts.pdf");
// getchar(); system("killall Preview"); // For macintosh
}
Latex combiner
\documentclass[12pt]{article}
\paperwidth 212px
\paperheight 210px
\textwidth 1394px
\textheight 1300px
\topmargin -100px
\oddsidemargin -74px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\parindent 0pt
\pagestyle{empty}
\begin{document}\parindent 0pt
\sx{1.}{\begin{picture}(280,203)
%\put(0,0){\ing{exc2cuts}}
%\put(0,0){\ing{figexc2}}
\put(0,0){\ing{sqrt26cuts}}
\put(0,0){\ing{sqrt26a}}
\put(6,207.7){\sx{.7}{$y$}}
\put(6,187.8){\sx{.7}{$8$}}
\put(6,167.8){\sx{.7}{$6$}}
\put(6,147.7){\sx{.7}{$4$}}
\put(6,127.7){\sx{.7}{$2$}}
\put(6,107.7){\sx{.7}{$0$}}
\put(0, 87.7){\sx{.7}{$-2$}}
\put(0, 67.6){\sx{.7}{$-4$}}
\put(0, 47.6){\sx{.7}{$-6$}}
\put(0, 27.5){\sx{.7}{$-8$}}
\put(3, 2){\sx{.7}{$-10$}}
\put( 27,2){\sx{.7}{$-8$}}
\put( 47,2){\sx{.7}{$-6$}}
\put( 67,2){\sx{.7}{$-4$}}
\put( 87,2){\sx{.7}{$-2$}}
\put(111,2){\sx{.7}{$0$}}
\put(131,2){\sx{.7}{$2$}}
\put(151,2){\sx{.7}{$4$}}
\put(171,2){\sx{.7}{$6$}}
\put(191,2){\sx{.7}{$8$}}
\put(210,2){\sx{.7}{$x$}}
%\put( 27,127){\sx{3}{$\exp_{b,2}^{[1/2]}$}}
\put(23,198.6){\sx{.9}{$v\!=\!0$}}
\put(33.7,92){\rot{90}\sx{.9}{$u\!=\!-1.2$}\ero}
\put(59.6,96){\rot{90}\sx{.9}{$u\!=\!-1$}\ero}
\put(102,98){\rot{90}\sx{.9}{$u\!=\!0$}\ero}
\put(122,99){\rot{90}\sx{.9}{$u\!=\!1$}\ero}
\put(136,99){\rot{90}\sx{.9}{$u\!=\!2$}\ero}
%\put(215,207){\sx{.8}{\bf cut}}
\put(195,199){\sx{.8}{\bf cut}}
\put(197,184){\rot{24}{\sx{.78}{\bf cut}}\ero}
\put(204.4,174.4){\rot{40}{\sx{.78}{\bf cut}}\ero}
%\put(215,184){\sx{.8}{\bf cut}}
%\put(215,175){\sx{.8}{\bf cut}}
\put(195,108){\sx{.78}{\bf cut}}
%
\put(87,145){\rot{-44}\sx{.9}{$v\!=\!1$}\ero}
\put(61,122){\rot{-15}\sx{.8}{$v\!=\!0.2$}\ero}
\put(63,108){\sx{.9}{$v\!=\!0$}}
\put(62, 94){\rot{13}\sx{.8}{$v\!=\!-0.2$}\ero}
%\put(215, 42){\sx{.8}{\bf cut}}
%\put(215, 33){\sx{.8}{\bf cut}}
%\put(215, 25){\sx{.8}{\bf cut}}
\put(196,32){\rot{-22}{\sx{.78}{\bf cut}}\ero}
\put(195, 17){\sx{.78}{\bf cut}}
%\put(-23, 17){\sx{1.}{$q\!=0$}}
%\put(215, 10){\sx{.8}{\bf cut}}
\put(23,17){\sx{.9}{$v\!=\!0$}}
\end{picture}}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,766 × 1,750 (1.43 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.