Difference between revisions of "File:TetSheldonTestImaT.png"
(Importing image file) |
|||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | Test of the evaluation of the [[tetration to Sheldon base]] |
||
− | Importing image file |
||
+ | $\mathrm{tet}_s(z)$ |
||
+ | along lines $z=\pm 1/2 + \mathrm i y$ versus $y$. |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | // Files |
||
+ | [[ado.cin]], |
||
+ | [[filog.cin]], |
||
+ | [[GLxw2048.inc]], |
||
+ | should be loaded in order to compile the [[C++]] code below: |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | //#include <complex.h> |
||
+ | //#define z_type complex<double> |
||
+ | #define Re(x) (x).real() |
||
+ | #define Im(x) (x).imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | |||
+ | #include "ado.cin" |
||
+ | #include "filog.cin" |
||
+ | |||
+ | #define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y)); |
||
+ | #define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y)); |
||
+ | #define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y)); |
||
+ | |||
+ | int main(){ int J,j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | |||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | |||
+ | int K=NPO; DB A=32.; printf("K=%3d A=%3.1f\n",K,A); |
||
+ | z_type E[2048],F[2048],G[2048],H[2048]; |
||
+ | |||
+ | FILE *o;o=fopen("TetSheldonIma.eps","w");ado(o,2200,450); |
||
+ | fprintf(o,"1100 201 translate\n 100 100 scale\n"); |
||
+ | for(j=-10;j<11;j+=1){M(j,-2)L(j,2);} |
||
+ | M(-10 , 2)L(10 , 2); |
||
+ | M(-10 , 1)L(10 , 1); |
||
+ | M(-10 ,-1)L(10 ,-1); |
||
+ | M(-10 ,-2)L(10 ,-2); |
||
+ | fprintf(o,".006 W S\n"); |
||
+ | M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n"); |
||
+ | fprintf(o,".01 W S\n 1 setlinejoin 1\n"); |
||
+ | |||
+ | DO(n,K){y=GLx[n]*A; |
||
+ | if(y<-2.4) E[n]=F[n]=G[n]=Zc; |
||
+ | else {if(y>2.4) E[n]=F[n]=G[n]=Zo; |
||
+ | else { F[n]=c=1. ;//f3(z_type(0.,y)); |
||
+ | E[n]=log(c)/a; |
||
+ | G[n]=exp(a*c); |
||
+ | } |
||
+ | } |
||
+ | } |
||
+ | |||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".08 W 1 .2 1 RGB S\n"); |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | //DO(k,K-512){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".08 W 1 .6 1 RGB S\n"); |
||
+ | |||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | //DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W .7 0 0 RGB S\n"); |
||
+ | //DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 1 0 0 RGB S\n"); |
||
+ | |||
+ | for(n=K-1;n>0;n-=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | //DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
+ | //DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".02 W 0 1 0 RGB S\n"); |
||
+ | |||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | //DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 .7 RGB S\n"); |
||
+ | //DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 0 0 1 RGB S\n"); |
||
+ | |||
+ | for(n=K-1;n>0;n-=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | //DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | //DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | DO(j,4) |
||
+ | { |
||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | for(n=K-1;n>0;n-=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | } |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)} |
||
+ | //DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | //DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} |
||
+ | fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | fprintf(o,"showpage\n\%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf TetSheldonIma.eps"); |
||
+ | system( "open TetSheldonIma.pdf"); |
||
+ | |||
+ | DO(j,40) |
||
+ | { |
||
+ | for(n=0;n<K;n+=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); } |
||
+ | for(n=K-1;n>0;n-=2) |
||
+ | { y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n); |
||
+ | DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c)); |
||
+ | E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);} |
||
+ | printf("%3d %19.16lf %19.16lf %19.16lf %19.16lf\n",j,Re(F[1023]),Im(F[1023]),Re(F[1024]),Im(F[1024]) ); |
||
+ | } |
||
+ | o=fopen("TetSheldonIma.inc","w"); |
||
+ | fprintf(o,"z_type F[%4d]={\n",K); |
||
+ | DO(k,K-1) fprintf(o,"z_type(%19.16lf,%19.16lf),\n",Re(F[k]),Im(F[k])); |
||
+ | fprintf(o,"z_type(%19.16lf,%19.16lf)};\n",Re(F[K-1]),Im(F[K-1])); |
||
+ | fclose(o); |
||
+ | } |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | |||
+ | ==[[Latex]] generator of curves== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | [[Category:Tetration to Sheldon base]] |
||
+ | [[Category:Iterated Cauchi]] |
||
+ | [[Category:tetration]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Expllicit plot]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
Latest revision as of 08:53, 1 December 2018
Test of the evaluation of the tetration to Sheldon base $\mathrm{tet}_s(z)$ along lines $z=\pm 1/2 + \mathrm i y$ versus $y$.
C++ generator of curves
// Files ado.cin, filog.cin, GLxw2048.inc, should be loaded in order to compile the C++ code below:
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
using namespace std;
#include <complex>
typedef complex<double> z_type;
//#include <complex.h>
//#define z_type complex<double>
#define Re(x) (x).real()
#define Im(x) (x).imag()
#define I z_type(0.,1.)
#define DO(x,y) for(x=0;x<y;x++)
#include "ado.cin"
#include "filog.cin"
#define M(x,y) fprintf(o,"%5.3f %5.3f M\n",1.*(x),1.*(y));
#define L(x,y) fprintf(o,"%5.3f %5.3f L\n",1.*(x),1.*(y));
#define o(x,y) fprintf(o,"%5.3f %5.3f o\n",1.*(x),1.*(y));
int main(){ int J,j,k,m,n; DB x,y, u, t; z_type z,c,d, cu,cd;
#include "GLxw2048.inc"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
int K=NPO; DB A=32.; printf("K=%3d A=%3.1f\n",K,A);
z_type E[2048],F[2048],G[2048],H[2048];
FILE *o;o=fopen("TetSheldonIma.eps","w");ado(o,2200,450);
fprintf(o,"1100 201 translate\n 100 100 scale\n");
for(j=-10;j<11;j+=1){M(j,-2)L(j,2);}
M(-10 , 2)L(10 , 2);
M(-10 , 1)L(10 , 1);
M(-10 ,-1)L(10 ,-1);
M(-10 ,-2)L(10 ,-2);
fprintf(o,".006 W S\n");
M(-10.1,0)L(10.1,0); fprintf(o,".02 W S\n");
fprintf(o,".01 W S\n 1 setlinejoin 1\n");
DO(n,K){y=GLx[n]*A;
if(y<-2.4) E[n]=F[n]=G[n]=Zc;
else {if(y>2.4) E[n]=F[n]=G[n]=Zo;
else { F[n]=c=1. ;//f3(z_type(0.,y));
E[n]=log(c)/a;
G[n]=exp(a*c);
}
}
}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)}
fprintf(o,".08 W 1 .2 1 RGB S\n");
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)}
//DO(k,K-512){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)}
fprintf(o,".08 W 1 .6 1 RGB S\n");
for(n=0;n<K;n+=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)}
//DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W .7 0 0 RGB S\n");
//DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)}
fprintf(o,".01 W 1 0 0 RGB S\n");
for(n=K-1;n>0;n-=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); }
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)}
//DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".02 W 0 .6 0 RGB S\n");
//DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)}
fprintf(o,".02 W 0 1 0 RGB S\n");
for(n=0;n<K;n+=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); }
//DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 .7 RGB S\n");
//DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)}
fprintf(o,".01 W 0 0 1 RGB S\n");
for(n=K-1;n>0;n-=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<4)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);}
//DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n");
//DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n");
DO(j,4)
{
for(n=0;n<K;n+=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); }
for(n=K-1;n>0;n-=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);}
}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Re(F[k]);if(j==0)M(y,u)else L(y,u)}
DO(j,440){k=K/2+j-220; y=GLx[k]*A; u=Im(F[k]);if(j==0)M(y,u)else L(y,u)}
//DO(k,K){y=GLx[k]*A; u=Re(F[k]);if(k==0)M(y,u)else L(y,u)} fprintf(o,".01 W 0 0 0 RGB S\n");
//DO(k,K){y=GLx[k]*A; u=Im(F[k]);if(k==0)M(y,u)else L(y,u)}
fprintf(o,".01 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n\%c%cTrailer",'%','%'); fclose(o);
system("epstopdf TetSheldonIma.eps");
system( "open TetSheldonIma.pdf");
DO(j,40)
{
for(n=0;n<K;n+=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a); }
for(n=K-1;n>0;n-=2)
{ y=GLx[n]*A; z=z_type(0.,y); c=0.; //printf(" %3d",n);
DO(k,K){t=A*GLx[k]; c+= GLw[k]*( G[k]/(z_type( 1.,t)-z) - E[k]/(z_type(-1.,t)-z) );}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
if(abs(n-K/2)<2)printf("%3d %6.3f %9.6f %9.6f %9.6f %9.6f\n",n,y,Re(F[n]),Im(F[n]),Re(c),Im(c));
E[n]=log(c)/a; F[n]=c; G[n]=exp(c*a);}
printf("%3d %19.16lf %19.16lf %19.16lf %19.16lf\n",j,Re(F[1023]),Im(F[1023]),Re(F[1024]),Im(F[1024]) );
}
o=fopen("TetSheldonIma.inc","w");
fprintf(o,"z_type F[%4d]={\n",K);
DO(k,K-1) fprintf(o,"z_type(%19.16lf,%19.16lf),\n",Re(F[k]),Im(F[k]));
fprintf(o,"z_type(%19.16lf,%19.16lf)};\n",Re(F[K-1]),Im(F[K-1]));
fclose(o);
}
Latex generator of curves
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 4,318 × 980 (322 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.