Difference between revisions of "File:Tetsheldonzoo.jpg"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[Complex map]] of [[tetration to Sheldon base]], zoom-in from the central part of figure |
||
− | Importing image file |
||
+ | http://mizugadro.mydns.jp/t/index.php/File:Tetsheldonmap03.png |
||
+ | |||
+ | $b=s=1.52598338517+0.0178411853321 i$. |
||
+ | |||
+ | $f=tet_s(x+\mathrm i y)$ is shown in ths $x,y$ plane with levels $u=\Re(f)=\mathrm{const}$ |
||
+ | and levels $v=\Im(f)=\mathrm{const}$; |
||
+ | thick lines correspond ot the integer values. |
||
+ | |||
+ | ==Usage== |
||
+ | This image should be second picture of figure 18.3 of English version of book [[Superfunctions]] |
||
+ | <ref> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/437.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/437.pdf |
||
+ | D.Kouznetov. Superfunctions. 2015. |
||
+ | </ref> |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | ==[[C++]] generator of map== |
||
+ | Files |
||
+ | [[ado.cin]], |
||
+ | [[conto.cin]], |
||
+ | [[filog.cin]], |
||
+ | [[GLxw2048.inc]], |
||
+ | [[TetSheldonIma.inc]] |
||
+ | should be loaded in order to compile the code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | // using namespace std; |
||
+ | #include <complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "conto.cin" |
||
+ | #include "filog.cin" |
||
+ | z_type b=z_type( 1.5259833851700000, 0.0178411853321000); |
||
+ | z_type a=log(b); |
||
+ | z_type Zo=Filog(a); |
||
+ | z_type Zc=conj(Filog(conj(a))); |
||
+ | DB A=32.; |
||
+ | z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd; |
||
+ | #include "GLxw2048.inc" |
||
+ | int K=2048; |
||
+ | //#include "ima6.inc" |
||
+ | #include "TetSheldonIma.inc" |
||
+ | z_type E[2048],G[2048]; |
||
+ | DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);} |
||
+ | c=0.; |
||
+ | //z+=z_type(0.1196573712872846, 0.1299776198056910); |
||
+ | z+=z_type( 0.1196591376539 , 0.1299777213955 ); |
||
+ | DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));} |
||
+ | cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) ); |
||
+ | cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) ); |
||
+ | c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd; |
||
+ | return c;} |
||
+ | |||
+ | int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d; |
||
+ | //int M=161,M1=M+1; |
||
+ | int M=201,M1=M+1; |
||
+ | int N=701,N1=N+1; |
||
+ | DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. |
||
+ | char v[M1*N1]; // v is working array |
||
+ | // FILE *o;o=fopen("09.eps","w");ado(o,2030,2020); |
||
+ | FILE *o;o=fopen("tetsheldonzo.eps","w");ado(o,2030,2020); |
||
+ | fprintf(o,"1010 1010 translate\n 100 100 scale\n"); |
||
+ | DO(m,M1)X[m]=-10.+.1*(m-.5); |
||
+ | DO(n,400)Y[n]=-10.+.025*n; |
||
+ | Y[400]=-.001; |
||
+ | Y[401]= .001; |
||
+ | for(n=202;n<N1;n++) Y[n]=-10.+.025*(n-1.); |
||
+ | for(m=-10;m<11;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}} |
||
+ | for(n=-10;n<11;n++){ M( -10,n)L(10,n)} |
||
+ | fprintf(o,".008 W 0 0 0 RGB S\n"); |
||
+ | DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;} |
||
+ | DO(n,N1){y=Y[n]; |
||
+ | for(m=95;m<105;m++) |
||
+ | {x=X[m]; //printf("%5.2f\n",x); |
||
+ | z=z_type(x,y); |
||
+ | c=tetb(z); |
||
+ | p=Re(c);q=Im(c); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;} |
||
+ | d=c; |
||
+ | for(k=1;k<11;k++) |
||
+ | { m1=m+k*10; if(m1>M) break; |
||
+ | d=exp(a*d); |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | d=c; |
||
+ | for(k=1;k<11;k++) |
||
+ | { m1=m-k*10; if(m1<0) break; |
||
+ | d=log(d)/a; |
||
+ | p=Re(d);q=Im(d); |
||
+ | if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;} |
||
+ | } |
||
+ | }} |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.6;q=.7; |
||
+ | for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n"); |
||
+ | for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n"); |
||
+ | for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n"); |
||
+ | conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n"); |
||
+ | for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n"); |
||
+ | // y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 1 .5 0 RGB S\n"); |
||
+ | // y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)} |
||
+ | // fprintf(o,".07 W 0 .5 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf tetsheldonzo.eps"); |
||
+ | system( "open tetsheldonzo.pdf"); |
||
+ | getchar(); system("killall Preview"); |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labels== |
||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \paperwidth 2090pt |
||
+ | \paperheight 2080pt |
||
+ | \textwidth 2090pt |
||
+ | \textheight 2090pt |
||
+ | %\textwidth 700pt |
||
+ | \usepackage{graphics} |
||
+ | \newcommand \sx \scalebox |
||
+ | \newcommand \ing \includegraphics |
||
+ | \parindent 0pt |
||
+ | \topmargin -104pt |
||
+ | \oddsidemargin -54pt |
||
+ | %\usepackage{rotate} |
||
+ | \usepackage{rotating} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \begin{document} |
||
+ | \begin{picture}(2064,2056) |
||
+ | %\put(0,0){\ing{04}} |
||
+ | %\put(0,0){\ing{tetshelim}} |
||
+ | \put(50,40){\ing{tetsheldonzo}} |
||
+ | \put(10,2024){\sx{6.2}{$y$}} |
||
+ | \put(10,1832){\sx{6}{$8$}} |
||
+ | \put(10,1632){\sx{6}{$6$}} |
||
+ | \put(10,1432){\sx{6}{$4$}} |
||
+ | \put(10,1232){\sx{6}{$2$}} |
||
+ | \put(10,1032){\sx{6}{$0$}} |
||
+ | \put(-36, 832){\sx{6}{$-2$}} |
||
+ | \put(-36, 632){\sx{6}{$-4$}} |
||
+ | \put(-36, 432){\sx{6}{$-6$}} |
||
+ | \put(-36, 232){\sx{6}{$-8$}} |
||
+ | \put(-16, -8){\sx{6}{$-10$}} |
||
+ | \put(200, -8){\sx{6}{$-8$}} |
||
+ | \put(400, -8){\sx{6}{$-6$}} |
||
+ | \put(600, -8){\sx{6}{$-4$}} |
||
+ | \put(800, -8){\sx{6}{$-2$}} |
||
+ | \put(1049, -8){\sx{6}{$0$}} |
||
+ | \put(1249, -8){\sx{6}{$2$}} |
||
+ | \put(1449, -8){\sx{6}{$4$}} |
||
+ | \put(1649, -8){\sx{6}{$6$}} |
||
+ | \put(1849, -8){\sx{6}{$8$}} |
||
+ | \put(2020, -8){\sx{6.2}{$x$}} |
||
+ | %\put(1000,1000}{\sx{6}{\rot{-8} $u\!=\!0$ \ero}} |
||
+ | \put(1070,940){\sx{8}{\rot{82}$u\!=\!1$\ero}} |
||
+ | \put(1300,930){\sx{8}{\rot{82}$u\!=\!2$\ero}} |
||
+ | \put(1566,900){\sx{8}{\rot{76}$u\!=\!3$\ero}} |
||
+ | \put(1300,1516){\sx{8}{\rot{-19}$v\!=\!1$\ero}}% |
||
+ | \put(1330,1008){\sx{8}{\rot{-11}$v\!=\!0$\ero}} |
||
+ | \put(1330, 618){\sx{8}{\rot{19}$v\!=\!-1$\ero}}% |
||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==References== |
||
+ | |||
+ | Дмитрий Кузнецов. Суперфункции. Lambert Academic Press, 2014. |
||
+ | |||
+ | [[Category:Complex map]] |
||
+ | [[Category:Tetration]] |
||
+ | [[Category:Tetration to Sheldon base]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Sheldon Levenstein]] |
||
+ | [[Category:Problem with fig]] |
||
+ | [[Category:Book]] |
||
+ | [[Category:BookMap]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Fragment]] |
||
+ | [[Category:Zoomin]] |
Latest revision as of 08:54, 1 December 2018
Complex map of tetration to Sheldon base, zoom-in from the central part of figure http://mizugadro.mydns.jp/t/index.php/File:Tetsheldonmap03.png
$b=s=1.52598338517+0.0178411853321 i$.
$f=tet_s(x+\mathrm i y)$ is shown in ths $x,y$ plane with levels $u=\Re(f)=\mathrm{const}$ and levels $v=\Im(f)=\mathrm{const}$; thick lines correspond ot the integer values.
Usage
This image should be second picture of figure 18.3 of English version of book Superfunctions [1]
References
- ↑
http://www.ils.uec.ac.jp/~dima/BOOK/437.pdf
http://mizugadro.mydns.jp/BOOK/437.pdf D.Kouznetov. Superfunctions. 2015.
C++ generator of map
Files ado.cin, conto.cin, filog.cin, GLxw2048.inc, TetSheldonIma.inc should be loaded in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
// using namespace std;
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
//z+=z_type(0.1196573712872846, 0.1299776198056910);
z+=z_type( 0.1196591376539 , 0.1299777213955 );
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
//int M=161,M1=M+1;
int M=201,M1=M+1;
int N=701,N1=N+1;
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
// FILE *o;o=fopen("09.eps","w");ado(o,2030,2020);
FILE *o;o=fopen("tetsheldonzo.eps","w");ado(o,2030,2020);
fprintf(o,"1010 1010 translate\n 100 100 scale\n");
DO(m,M1)X[m]=-10.+.1*(m-.5);
DO(n,400)Y[n]=-10.+.025*n;
Y[400]=-.001;
Y[401]= .001;
for(n=202;n<N1;n++) Y[n]=-10.+.025*(n-1.);
for(m=-10;m<11;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -10,n)L(10,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
DO(n,N1){y=Y[n];
for(m=95;m<105;m++)
{x=X[m]; //printf("%5.2f\n",x);
z=z_type(x,y);
c=tetb(z);
p=Re(c);q=Im(c);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
d=c;
for(k=1;k<11;k++)
{ m1=m+k*10; if(m1>M) break;
d=exp(a*d);
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
d=c;
for(k=1;k<11;k++)
{ m1=m-k*10; if(m1<0) break;
d=log(d)/a;
p=Re(d);q=Im(d);
if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
}
}}
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1.6;q=.7;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
// y= 0; for(m=0;m<260;m+=6) {x=-2.-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 1 .5 0 RGB S\n");
// y= 0; for(m=3;m<260;m+=6) {x=-2-.1*m; M(x,y) L(x-.1,y)}
// fprintf(o,".07 W 0 .5 1 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
system("epstopdf tetsheldonzo.eps");
system( "open tetsheldonzo.pdf");
getchar(); system("killall Preview");
}
Latex generator of labels
\documentclass[12pt]{article}
\usepackage{geometry}
\paperwidth 2090pt
\paperheight 2080pt
\textwidth 2090pt
\textheight 2090pt
%\textwidth 700pt
\usepackage{graphics}
\newcommand \sx \scalebox
\newcommand \ing \includegraphics
\parindent 0pt
\topmargin -104pt
\oddsidemargin -54pt
%\usepackage{rotate}
\usepackage{rotating}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\begin{document}
\begin{picture}(2064,2056)
%\put(0,0){\ing{04}}
%\put(0,0){\ing{tetshelim}}
\put(50,40){\ing{tetsheldonzo}}
\put(10,2024){\sx{6.2}{$y$}}
\put(10,1832){\sx{6}{$8$}}
\put(10,1632){\sx{6}{$6$}}
\put(10,1432){\sx{6}{$4$}}
\put(10,1232){\sx{6}{$2$}}
\put(10,1032){\sx{6}{$0$}}
\put(-36, 832){\sx{6}{$-2$}}
\put(-36, 632){\sx{6}{$-4$}}
\put(-36, 432){\sx{6}{$-6$}}
\put(-36, 232){\sx{6}{$-8$}}
\put(-16, -8){\sx{6}{$-10$}}
\put(200, -8){\sx{6}{$-8$}}
\put(400, -8){\sx{6}{$-6$}}
\put(600, -8){\sx{6}{$-4$}}
\put(800, -8){\sx{6}{$-2$}}
\put(1049, -8){\sx{6}{$0$}}
\put(1249, -8){\sx{6}{$2$}}
\put(1449, -8){\sx{6}{$4$}}
\put(1649, -8){\sx{6}{$6$}}
\put(1849, -8){\sx{6}{$8$}}
\put(2020, -8){\sx{6.2}{$x$}}
%\put(1000,1000}{\sx{6}{\rot{-8} $u\!=\!0$ \ero}}
\put(1070,940){\sx{8}{\rot{82}$u\!=\!1$\ero}}
\put(1300,930){\sx{8}{\rot{82}$u\!=\!2$\ero}}
\put(1566,900){\sx{8}{\rot{76}$u\!=\!3$\ero}}
\put(1300,1516){\sx{8}{\rot{-19}$v\!=\!1$\ero}}%
\put(1330,1008){\sx{8}{\rot{-11}$v\!=\!0$\ero}}
\put(1330, 618){\sx{8}{\rot{19}$v\!=\!-1$\ero}}%
\end{picture}
\end{document}
References
Дмитрий Кузнецов. Суперфункции. Lambert Academic Press, 2014.
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 4,337 × 4,317 (1.73 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.