Difference between revisions of "File:SuperFacPlotT.png"
(Importing image file) |
|||
Line 1: | Line 1: | ||
+ | [[SuperFactorial]] of real argument (Blue curve) in comparison with [[Factorial]] (Red curve). |
||
− | Importing image file |
||
+ | |||
+ | [[Factorial]] is holomorphic solution of equations |
||
+ | : $\mathrm{Factorial}(z\!+\!1)=(z\!+\!1)\, \mathrm{Factorial}(z)~$, $~\mathrm{Factorial}(0)\!=\!1$ |
||
+ | |||
+ | [[SuperFactorial]]$(z)=\mathrm{Factorial}^z(3)$ is holomorphic solution of equations |
||
+ | : $\mathrm{SuperFactorial}(z\!+\!1)=\mathrm{Factorial}\Big(\mathrm{SuperFactorial}(z)\Big)~$ , $~\mathrm{SuperFactorial}(0)\!=\!3$ |
||
+ | |||
+ | ==Generator of curves== |
||
+ | |||
+ | // Files [[fac.cin]], [[superfactorial.cin]] and [[ado.cin]] should be loaded to the working directory in order to compile the [[C++]] code below. |
||
+ | |||
+ | #include<math.h> |
||
+ | #include<stdio.h> |
||
+ | #include<stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | using namespace std; |
||
+ | #include <complex> |
||
+ | typedef complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | #include "ado.cin" |
||
+ | #include "fac.cin" |
||
+ | #include "superfactorial.cin" |
||
+ | //#include "doya.cin" |
||
+ | //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); } |
||
+ | |||
+ | main(){ int m,n; double x,y; FILE *o; |
||
+ | o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010); |
||
+ | fprintf(o,"401 1 translate 100 100 scale\n"); |
||
+ | #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); |
||
+ | for(m=-4;m<5;m++) {M(m,0)L(m,10)} |
||
+ | for(m=0;m<11;m++) {M(-4,m)L(4,m)} |
||
+ | fprintf(o,"2 setlinecap .01 W S\n"); |
||
+ | // for(m=0;m<81;m++){x=-4.+.1*m; y=Shoko(x); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n"); |
||
+ | // for(m=0;m<81;m++){x=-4.+.1*m; y=Re(Tania(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n"); |
||
+ | for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 0 RGB S\n"); |
||
+ | for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0 1 RGB S\n"); |
||
+ | fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); |
||
+ | system("epstopdf SuperFacPlot.eps"); |
||
+ | system( "open SuperFacPlot.pdf"); |
||
+ | getchar(); system("killall Preview");//for mac |
||
+ | } |
||
+ | |||
+ | ==Latex generator of labels== |
||
+ | |||
+ | % File [[SuperFacPlot.pdf]] should be generated with the code above in order to compile the [[Latex]] document below: |
||
+ | |||
+ | %<nowiki> |
||
+ | \documentclass[12pt]{article} %<br> |
||
+ | \usepackage{geometry} %<br> |
||
+ | \usepackage{graphics} %<br> |
||
+ | \usepackage{rotating} %<br> |
||
+ | \paperwidth 806pt %<br> |
||
+ | \paperheight 1016pt %<br> |
||
+ | \topmargin -96pt %<br> |
||
+ | \oddsidemargin -72pt %<br> |
||
+ | \textwidth 1004pt %<br> |
||
+ | \textheight 1400pt %<br> |
||
+ | \newcommand \sx {\scalebox} %<br> |
||
+ | \newcommand \ing \includegraphics %<br> |
||
+ | \newcommand \rot {\begin{rotate}} %<br> |
||
+ | \newcommand \ero {\end{rotate}} %<br> |
||
+ | \parindent 0pt %<br> |
||
+ | \pagestyle{empty} %<br> |
||
+ | \begin{document} %<br> |
||
+ | \begin{picture}(602,1002) %<br> |
||
+ | \put(0,0){\includegraphics{SuperFacPlot}} %<br> |
||
+ | \put(380,999){\sx{3}{$y$}} %<br> |
||
+ | \put(380,891){\sx{3}{$9$}} %<br> |
||
+ | \put(380,791){\sx{3}{$8$}} %<br> |
||
+ | \put(380,691){\sx{3}{$7$}} %<br> |
||
+ | \put(380,591){\sx{3}{$6$}} %<br> |
||
+ | \put(380,491){\sx{3}{$5$}} %<br> |
||
+ | \put(380,391){\sx{3}{$4$}} %<br> |
||
+ | \put(380,291){\sx{3}{$3$}} %<br> |
||
+ | \put(380,191){\sx{3}{$2$}} %<br> |
||
+ | \put(380,91){\sx{3}{$1$}} %<br> |
||
+ | \put( 77,5){\sx{3}{$-\!3$}} %<br> |
||
+ | \put(177,5){\sx{3}{$-\!2$}} %<br> |
||
+ | \put(277,5){\sx{3}{$-\!1$}} %<br> |
||
+ | \put(394,5){\sx{3}{$0$}} %<br> |
||
+ | \put(494,5){\sx{3}{$1$}} %<br> |
||
+ | \put(594,5){\sx{3}{$2$}} %<br> |
||
+ | \put(694,5){\sx{3}{$3$}} %<br> |
||
+ | \put(782,5){\sx{3}{$x$}} %<br> |
||
+ | \put(532,510){\sx{4}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}} %<br> |
||
+ | %\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %<br> |
||
+ | \put(740,550){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %<br> |
||
+ | \end{picture} %<br> |
||
+ | \end{document} %<br> |
||
+ | %</nowiki> |
||
+ | |||
+ | [[Category:SuperFactorial]] |
||
+ | [[Category:Factorial]] |
||
+ | [[Category:Explicit plot]] |
Latest revision as of 09:43, 21 June 2013
SuperFactorial of real argument (Blue curve) in comparison with Factorial (Red curve).
Factorial is holomorphic solution of equations
- $\mathrm{Factorial}(z\!+\!1)=(z\!+\!1)\, \mathrm{Factorial}(z)~$, $~\mathrm{Factorial}(0)\!=\!1$
SuperFactorial$(z)=\mathrm{Factorial}^z(3)$ is holomorphic solution of equations
- $\mathrm{SuperFactorial}(z\!+\!1)=\mathrm{Factorial}\Big(\mathrm{SuperFactorial}(z)\Big)~$ , $~\mathrm{SuperFactorial}(0)\!=\!3$
Generator of curves
// Files fac.cin, superfactorial.cin and ado.cin should be loaded to the working directory in order to compile the C++ code below.
#include<math.h> #include<stdio.h> #include<stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #define I z_type(0.,1.) #include "ado.cin" #include "fac.cin" #include "superfactorial.cin" //#include "doya.cin" //DB Shoko(DB x) { return log(1.+exp(x)*(M_E-1.)); }
main(){ int m,n; double x,y; FILE *o; o=fopen("SuperFacPlot.eps","w"); ado(o,802,1010); fprintf(o,"401 1 translate 100 100 scale\n"); #define M(x,y) fprintf(o,"%6.3f %6.3f M\n",0.+x,0.+y); #define L(x,y) fprintf(o,"%6.3f %6.3f L\n",0.+x,0.+y); for(m=-4;m<5;m++) {M(m,0)L(m,10)} for(m=0;m<11;m++) {M(-4,m)L(4,m)} fprintf(o,"2 setlinecap .01 W S\n"); // for(m=0;m<81;m++){x=-4.+.1*m; y=Shoko(x); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0.6 0 RGB S\n"); // for(m=0;m<81;m++){x=-4.+.1*m; y=Re(Tania(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .014 W 0.4 0 .4 RGB S\n"); for(m=0;m<42;m++){x=-.5+.1*m; y=Re(fac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 1 0 0 RGB S\n"); for(m=0;m<54;m++){x=-4+.1*m; y=Re(superfac(x)); if(m==0)M(x,y) else L(x,y);} fprintf(o,"1 setlinecap 1 setlinejoin .04 W 0 0 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf SuperFacPlot.eps"); system( "open SuperFacPlot.pdf"); getchar(); system("killall Preview");//for mac }
Latex generator of labels
% File SuperFacPlot.pdf should be generated with the code above in order to compile the Latex document below:
% \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphics} %<br> \usepackage{rotating} %<br> \paperwidth 806pt %<br> \paperheight 1016pt %<br> \topmargin -96pt %<br> \oddsidemargin -72pt %<br> \textwidth 1004pt %<br> \textheight 1400pt %<br> \newcommand \sx {\scalebox} %<br> \newcommand \ing \includegraphics %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \parindent 0pt %<br> \pagestyle{empty} %<br> \begin{document} %<br> \begin{picture}(602,1002) %<br> \put(0,0){\includegraphics{SuperFacPlot}} %<br> \put(380,999){\sx{3}{$y$}} %<br> \put(380,891){\sx{3}{$9$}} %<br> \put(380,791){\sx{3}{$8$}} %<br> \put(380,691){\sx{3}{$7$}} %<br> \put(380,591){\sx{3}{$6$}} %<br> \put(380,491){\sx{3}{$5$}} %<br> \put(380,391){\sx{3}{$4$}} %<br> \put(380,291){\sx{3}{$3$}} %<br> \put(380,191){\sx{3}{$2$}} %<br> \put(380,91){\sx{3}{$1$}} %<br> \put( 77,5){\sx{3}{$-\!3$}} %<br> \put(177,5){\sx{3}{$-\!2$}} %<br> \put(277,5){\sx{3}{$-\!1$}} %<br> \put(394,5){\sx{3}{$0$}} %<br> \put(494,5){\sx{3}{$1$}} %<br> \put(594,5){\sx{3}{$2$}} %<br> \put(694,5){\sx{3}{$3$}} %<br> \put(782,5){\sx{3}{$x$}} %<br> \put(532,510){\sx{4}{\rot{83}$y\!=\!\mathrm{SuperFactorial}(x)$\ero}} %<br> %\put(660,450){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %<br> \put(740,550){\sx{4}{\rot{83}$y\!=\!\mathrm{Factorial}(x)$\ero}} %<br> \end{picture} %<br> \end{document} %<br> %
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 1,673 × 2,109 (181 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.