Difference between revisions of "File:TraplotT.jpg"
(Importing image file) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | [[Explicit plot]] of the [[Trappmann function]] |
||
− | Importing image file |
||
+ | |||
+ | $y=\mathrm{tra}(x)=\exp(x)\!+\!x$ |
||
+ | |||
+ | For comparison, the [[exponent]] is shown, |
||
+ | |||
+ | $y=\exp(x)$ |
||
+ | |||
+ | This function is interesting as a [[transfer function]], because it has no [[fixed point]]. |
||
+ | One of its [[superfunction]]s, namely, [[SuTra]], is entire function with logarithmic asymptotic |
||
+ | <ref> |
||
+ | http://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf D.Kouznetsov. Entire Function with Logarithmic Asymptotic. Applied Mathematical Sciences, Vol. 7, 2013, no. 131, 6527 - 6541 |
||
+ | </ref>. |
||
+ | |||
+ | The image is used as Figure 20.1 in book [[Superfunction]] (In Russian, 2014; the English version is in preparation, 2015) |
||
+ | <ref> |
||
+ | https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br> |
||
+ | http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br> |
||
+ | http://mizugadro.mydns.jp/BOOK/202.pdf |
||
+ | Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014 |
||
+ | </ref>. |
||
+ | |||
+ | ==References== |
||
+ | <references/> |
||
+ | |||
+ | ==[[C++]] generator of curves== |
||
+ | |||
+ | Files [[ado.cin]], should be loaded to the working directory in order to compile the code below |
||
+ | <poem><nomathjax><nowiki> |
||
+ | #include <math.h> |
||
+ | #include <stdio.h> |
||
+ | #include <stdlib.h> |
||
+ | #define DB double |
||
+ | #define DO(x,y) for(x=0;x<y;x++) |
||
+ | //using namespace std; |
||
+ | #include<complex> |
||
+ | typedef std::complex<double> z_type; |
||
+ | #define Re(x) x.real() |
||
+ | #define Im(x) x.imag() |
||
+ | #define I z_type(0.,1.) |
||
+ | //#include "Tania.cin" // need for LambertW |
||
+ | /* |
||
+ | #include "doya.cin" // need for LambertW |
||
+ | #include "LambertW.cin" // need for AuZex |
||
+ | #include "SuZex.cin" |
||
+ | #include "AuZex.cin" |
||
+ | */ |
||
+ | z_type tra(z_type z){ return exp(z)+z;} |
||
+ | /* |
||
+ | z_type F(z_type z){ return log(suzex(z));} |
||
+ | z_type G(z_type z){ return auzex(exp(z));} |
||
+ | */ |
||
+ | #include "ado.cin" |
||
+ | #define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y); |
||
+ | #define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y); |
||
+ | int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("traplot.eps","w"); ado(o,504,806); |
||
+ | fprintf(o,"302 302 translate\n 100 100 scale\n"); |
||
+ | fprintf(o,"1 setlinejoin 2 setlinecap\n"); |
||
+ | for(n=-3;n<7;n++) {M(-3,n)L(2,n)} |
||
+ | for(m=-3;m<3;m++) {M(m,-3)L(m,6)} |
||
+ | M(0,M_E)L(1,M_E) |
||
+ | M(0,M_E+1)L(1,M_E+1) |
||
+ | fprintf(o,".004 W S\n"); |
||
+ | // DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n"); |
||
+ | // DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n"); |
||
+ | // M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n"); |
||
+ | DO(m,700){x=-3.02+.02*m; y=Re(tra(x)); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;} fprintf(o,".04 W 0 0 1 RGB S\n"); |
||
+ | DO(m,700){x=-3.02+.02*m; y=exp(x); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;} fprintf(o,".01 W 0 0 0 RGB S\n"); |
||
+ | |||
+ | fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o); |
||
+ | system("epstopdf traplot.eps"); |
||
+ | system( "open traplot.pdf"); //for macintosh |
||
+ | getchar(); system("killall Preview"); // For macintosh |
||
+ | } |
||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | ==[[Latex]] generator of labelw== |
||
+ | |||
+ | <poem><nomathjax><nowiki> |
||
+ | \documentclass[12pt]{article} |
||
+ | \usepackage{geometry} |
||
+ | \usepackage{graphicx} |
||
+ | \usepackage{rotating} |
||
+ | \paperwidth 506pt |
||
+ | \paperheight 808pt |
||
+ | \topmargin -105pt |
||
+ | \oddsidemargin -73pt |
||
+ | \textwidth 1100pt |
||
+ | \textheight 1100pt |
||
+ | \pagestyle {empty} |
||
+ | \newcommand \sx {\scalebox} |
||
+ | \newcommand \rot {\begin{rotate}} |
||
+ | \newcommand \ero {\end{rotate}} |
||
+ | \newcommand \ing {\includegraphics} |
||
+ | \parindent 0pt |
||
+ | \pagestyle{empty} |
||
+ | \begin{document} |
||
+ | \begin{picture}(604,804) |
||
+ | %\put(10,10){\ing{PowPlo}} |
||
+ | \put(0,0){\ing{traplot}} |
||
+ | \put(280,784){\sx{3.4}{$y$}} |
||
+ | \put(280,693){\sx{3.4}{$4$}} |
||
+ | \put(224,666){\sx{3.4}{$1\!+\!\rm e$}} |
||
+ | \put(280,593){\sx{3.4}{$3$}} |
||
+ | \put(280,566){\sx{3.4}{$\rm e$}} |
||
+ | \put(280,493){\sx{3.4}{$2$}} |
||
+ | \put(280,393){\sx{3.4}{$1$}} |
||
+ | \put(280,294){\sx{3.4}{$0$}} |
||
+ | \put(252,191){\sx{3.4}{$-1$}} |
||
+ | \put(252,091){\sx{3.4}{$-2$}} |
||
+ | \put(070,272){\sx{3.4}{$-2$}} |
||
+ | \put(170,272){\sx{3.4}{$-1$}} |
||
+ | \put(294,272){\sx{3.4}{$0$}} |
||
+ | \put(394,272){\sx{3.4}{$1$}} |
||
+ | %\put(497,308){\sx{2.4}{$2$}} |
||
+ | \put(482,274){\sx{3.4}{$x$}} |
||
+ | |||
+ | \put(24,342){\sx{3.4}{$y\!=\!\exp(x)$}} |
||
+ | \put(56,42){\sx{3.4}{$y\!=\!\mathrm{tra}(x)$}} |
||
+ | |||
+ | \end{picture} |
||
+ | \end{document} |
||
+ | |||
+ | </nowiki></nomathjax></poem> |
||
+ | |||
+ | [[Category:Book]] |
||
+ | [[Category:BookPlot]] |
||
+ | [[Category:C++]] |
||
+ | [[Category:Elementary function]] |
||
+ | [[Category:Explicit plot]] |
||
+ | [[Category:Latex]] |
||
+ | [[Category:Superfunction]] |
||
+ | [[Category:Trapmann function]] |
Latest revision as of 10:33, 20 July 2020
Explicit plot of the Trappmann function
$y=\mathrm{tra}(x)=\exp(x)\!+\!x$
For comparison, the exponent is shown,
$y=\exp(x)$
This function is interesting as a transfer function, because it has no fixed point. One of its superfunctions, namely, SuTra, is entire function with logarithmic asymptotic [1].
The image is used as Figure 20.1 in book Superfunction (In Russian, 2014; the English version is in preparation, 2015) [2].
References
- ↑ http://www.m-hikari.com/ams/ams-2013/ams-129-132-2013/kouznetsovAMS129-132-2013.pdf D.Kouznetsov. Entire Function with Logarithmic Asymptotic. Applied Mathematical Sciences, Vol. 7, 2013, no. 131, 6527 - 6541
- ↑
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf
http://mizugadro.mydns.jp/BOOK/202.pdf Д.Кузнецов. Суперфункции. Lambert Academic Publishing, 2014
C++ generator of curves
Files ado.cin, should be loaded to the working directory in order to compile the code below
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
//using namespace std;
#include<complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
//#include "Tania.cin" // need for LambertW
/*
#include "doya.cin" // need for LambertW
#include "LambertW.cin" // need for AuZex
#include "SuZex.cin"
#include "AuZex.cin"
*/
z_type tra(z_type z){ return exp(z)+z;}
/*
z_type F(z_type z){ return log(suzex(z));}
z_type G(z_type z){ return auzex(exp(z));}
*/
#include "ado.cin"
#define M(x,y) fprintf(o,"%6.4f %6.4f M\n",0.+x,0.+y);
#define L(x,y) fprintf(o,"%6.4f %6.4f L\n",0.+x,0.+y);
int main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d; FILE *o;o=fopen("traplot.eps","w"); ado(o,504,806);
fprintf(o,"302 302 translate\n 100 100 scale\n");
fprintf(o,"1 setlinejoin 2 setlinecap\n");
for(n=-3;n<7;n++) {M(-3,n)L(2,n)}
for(m=-3;m<3;m++) {M(m,-3)L(m,6)}
M(0,M_E)L(1,M_E)
M(0,M_E+1)L(1,M_E+1)
fprintf(o,".004 W S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(LambertW(x)));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".033 W 1 0 0 RGB S\n");
// DO(m,700){x=.01 +.02*m; y=Re(LambertW(x));if(m==0) M(x,y) else L(x,y) if(x>12.03||y>12.03) break;} fprintf(o,".04 W 1 .5 0 RGB S\n");
// M(0,0) L(12.03,12.03) fprintf(o,".04 W 0 1 0 RGB S\n");
DO(m,700){x=-3.02+.02*m; y=Re(tra(x)); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;} fprintf(o,".04 W 0 0 1 RGB S\n");
DO(m,700){x=-3.02+.02*m; y=exp(x); if(m==0) M(x,y) else L(x,y) if(x>3.03||y>10.03) break;} fprintf(o,".01 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n"); fprintf(o,"%c%cTrailer\n",'%','%'); fclose(o);
system("epstopdf traplot.eps");
system( "open traplot.pdf"); //for macintosh
getchar(); system("killall Preview"); // For macintosh
}
Latex generator of labelw
\documentclass[12pt]{article}
\usepackage{geometry}
\usepackage{graphicx}
\usepackage{rotating}
\paperwidth 506pt
\paperheight 808pt
\topmargin -105pt
\oddsidemargin -73pt
\textwidth 1100pt
\textheight 1100pt
\pagestyle {empty}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\parindent 0pt
\pagestyle{empty}
\begin{document}
\begin{picture}(604,804)
%\put(10,10){\ing{PowPlo}}
\put(0,0){\ing{traplot}}
\put(280,784){\sx{3.4}{$y$}}
\put(280,693){\sx{3.4}{$4$}}
\put(224,666){\sx{3.4}{$1\!+\!\rm e$}}
\put(280,593){\sx{3.4}{$3$}}
\put(280,566){\sx{3.4}{$\rm e$}}
\put(280,493){\sx{3.4}{$2$}}
\put(280,393){\sx{3.4}{$1$}}
\put(280,294){\sx{3.4}{$0$}}
\put(252,191){\sx{3.4}{$-1$}}
\put(252,091){\sx{3.4}{$-2$}}
\put(070,272){\sx{3.4}{$-2$}}
\put(170,272){\sx{3.4}{$-1$}}
\put(294,272){\sx{3.4}{$0$}}
\put(394,272){\sx{3.4}{$1$}}
%\put(497,308){\sx{2.4}{$2$}}
\put(482,274){\sx{3.4}{$x$}}
\put(24,342){\sx{3.4}{$y\!=\!\exp(x)$}}
\put(56,42){\sx{3.4}{$y\!=\!\mathrm{tra}(x)$}}
\end{picture}
\end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:14, 1 December 2018 | 1,050 × 1,677 (166 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.