Difference between revisions of "File:Sqrt2figL45eT.png"
Jump to navigation
Jump to search
Line 127: | Line 127: | ||
==[[Latex]] generator of labels== |
==[[Latex]] generator of labels== |
||
+ | %<pre> |
||
− | %<nowiki> %<br> |
||
% Copyleft 2012 by Dmitrii Kouznetsov %<br> |
% Copyleft 2012 by Dmitrii Kouznetsov %<br> |
||
\documentclass[12pt]{article} %<br> |
\documentclass[12pt]{article} %<br> |
||
Line 191: | Line 191: | ||
} %<br> |
} %<br> |
||
\end{document} |
\end{document} |
||
− | </ |
+ | </pre> |
[[Category:Abel function]] |
[[Category:Abel function]] |
Latest revision as of 12:53, 20 July 2020
Complex map of the Abel function $G$ of the exponential to base $b\!=\!\sqrt{2}$ constructed at the fixed point $L\!=\!4$ with normalization $G(0)\!=\!5$.
In the Mathematics of computation [1], this function is denoted as $F_{4,5}^{-1}$.
The lines drawn correspond to $u\!+\!\mathrm i v=G(x\!+\!\mathrm i y)$
References
- ↑ http://tori.ils.uec.ac.jp/PAPERS/2010sqrt2.pdf D.Kouznetsov, H.Trappmnn. Portrait of the four regular super-exponentials to base sqrt(2). Mathematics of Computation, v.271, July 2010, p.1727-1756.
C++ generator of curves
Files ado.cin and conto.cin should be loaded to the working directory in order to compile the C++ code below.
#include <math.h> #include <stdio.h> #include <stdlib.h> #define DB double #define DO(x,y) for(x=0;x<y;x++) using namespace std; #include <complex> typedef complex<double> z_type; #define Re(x) x.real() #define Im(x) x.imag() #include "conto.cin"
z_type f45E(z_type z){int n; z_type e,s; DB coeu[21]={1., 0.44858743119526122890, .19037224679780675668, 0.77829576536968278770e-1, 0.30935860305707997953e-1, 0.12022125769065893274e-1, 0.45849888965617461424e-2, 0.17207423310577291102e-2, 0.63681090387985537364e-3, 0.23276960030302567773e-3, 0.84145511838119915857e-4, 0.30115646493706434120e-4, 0.10680745813035087964e-4, 0.37565713615564248453e-5, 0.13111367785052622794e-5, 0.45437916254218158081e-6, 0.15642984632975371803e-6, 0.53523276400816416929e-7, 0.18207786280204973113e-7, 0.61604764947389226744e-8, 0.2e-8}; e=exp(.32663425997828098238*(z-1.11520724513161)); s=coeu[20]; for(n=19;n>=0;n--) { s*=e; s+=coeu[n]; } // s=coeu[19]; for(n=18;n>=0;n--) { s*=e; s+=coeu[n]; } return 4.+s*e;}
z_type F45E(z_type z){ DB b=sqrt(2.); if(Re(z)<-1.) return f45E(z); return exp(F45E(z-1.)*log(b)); }
z_type f45L(z_type z){ int n; z_type e,s; DB Uco[21]={1, -.44858743119526122890, .21208912005491969757, -.10218436750697167872, 0.49698683037371830337e-1, -0.2430759032611955221e-1, 0.11933088396510860210e-1, -0.587369764200886206e-2, 0.289686728710575713e-2, -0.1430908106079253664e-2, 0.7076637148565759223e-3, -0.3503296158729878e-3, 0.17357560046634138e-3, -0.86061011929162626e-4, 0.426959089012891e-4, -0.2119302906819844809e-4, 0.1052442259960e-4, -0.52285174354086e-5, 0.259844999161e-5, -0.129178211214818578e-5, 0.4e-6 }; z-=4.; s=Uco[19]; for(n=18; n>=0; n--){ s*=z; s+=Uco[n]; } // s=Uco[20]; for(n=19; n>=0; n--){ s*=z; s+=Uco[n]; } // return log(s*z)/.32663425997828098238 +1.1152091357215375; return log(s*z)/.32663425997828098238 +1.11520724513161; }
z_type F45L(z_type z){ DB b=sqrt(2.); if(abs(z-4.)>.4) return F45L(log(z)/log(b))+1. ; return f45L(z); } // #include"sqrt2f45E.cin"
main(){ int j,k,m,n; DB x,y, p,q, t; z_type z,c,d, cu,cd; int M=501,M1=M+1; int N=403,N1=N+1; DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array. char v[M1*N1]; // v is working array FILE *o;o=fopen("sqrt2figL45e.eps","w"); ado(o,202,202); fprintf(o,"101 101 translate\n 10 10 scale\n"); DO(m,M1) X[m]=-10.+.04*(m-.5); //DO(n,N1) Y[n]=-10.+.04*(n-.5); DO(n,200) Y[n]=sinh(3.*(n-200.5)/200.); Y[200]=-.0001; Y[201]= .0001; for(n=202;n<N1;n++) Y[n]=sinh(3.*(n-200.5-2)/200.); for(m=-10;m<11;m++) {M(m,-10)L(m,10)} for(n=-10;n<11;n++) {M( -10,n)L(10,n)} fprintf(o,"1 setlinejoin 2 setlinecap\n"); fprintf(o," .006 W 0 0 0 RGB S\n"); // z_type tm,tp,F[M1*N1]; DO(m,M1)DO(n,N1){ g[m*N1+n]=9999; f[m*N1+n]=9999;} DO(m,M1){x=X[m]; DO(n,N1){y=Y[n]; z=z_type(x,y); // c=F45E(z); c=F45L(z); p=Re(c); q=Im(c); if(p>-15. && p<15. && q>-15. && q<15. // && fabs(p)>1.e-14 // && fabs(q)>1.e-14 ) { g[m*N1+n]=p; f[m*N1+n]=q;} }} p=2.5; q=.8; for(m=-10;m<10;m++)for(n=2 ;n<10;n+=2)conto(o,f,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".01 W 0 .6 0 RGB S\n"); for(m=0;m<11;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q,q); fprintf(o,".01 W .9 0 0 RGB S\n"); for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q,q); fprintf(o,".01 W 0 0 .9 RGB S\n"); for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p);fprintf(o,".03 W .8 0 0 RGB S\n"); for(m= 1;m<11;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p);fprintf(o,".03 W 0 0 .8 RGB S\n"); conto(o,f,w,v,X,Y,M,N, (0. ),-2*p,2*p); fprintf(o,".03 W .5 0 .5 RGB S\n"); for(m=-11;m<16;m++)conto(o,g,w,v,X,Y,M,N,(0.+m),-p,p);fprintf(o,".03 W 0 0 0 RGB S\n"); // #include "plofu.cin" M(-10,0)L(4,0)fprintf(o,"0 setlinecap .04 W 1 1 1 RGB S\n"); for(n=0;n<28;n++){ M(4-.5*(n+.2),0) L(4-.5*(n+.4),0) } fprintf(o,".06 W 1 .5 0 RGB S\n"); for(n=0;n<28;n++){ M(4-.5*(n+.7),0) L(4-.5*(n+.9),0) } fprintf(o,".06 W 0 .5 1 RGB S\n"); fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o); system("epstopdf sqrt2figL45e.eps"); system( "open sqrt2figL45e.pdf"); //for macintosh }
Latex generator of labels
%
% Copyleft 2012 by Dmitrii Kouznetsov %<br> \documentclass[12pt]{article} %<br> \usepackage{geometry} %<br> \usepackage{graphicx} %<br> \usepackage{rotating} %<br> \paperwidth 1050pt %<br> \paperheight 1040pt %<br> \topmargin -98pt %<br> \oddsidemargin -99pt %<br> \textwidth 1100pt %<br> \textheight 1100pt %<br> \pagestyle {empty} %<br> \newcommand \sx {\scalebox} %<br> \newcommand \rot {\begin{rotate}} %<br> \newcommand \ero {\end{rotate}} %<br> \newcommand \ing {\includegraphics} %<br> \begin{document} %<br> \sx{5}{ \begin{picture}(208,205) %<br> % \put(6,5){\ing{arctaniacontour}} %<br> % \put(6,5){\ing{sqrt2figf45e}} %<br> \put(6,5){\ing{sqrt2figL45e}} %<br> \put(2,203.4){\sx{.7}{$y$}} %<br> \put(2,184){\sx{.6}{$8$}} %<br> \put(2,164){\sx{.6}{$6$}} %<br> \put(2,144){\sx{.6}{$4$}} %<br> \put(2,124){\sx{.6}{$2$}} %<br> \put(2,104){\sx{.6}{$0$}} %<br> \put(-3,84){\sx{.6}{$-2$}} %<br> \put(-3,64){\sx{.6}{$-4$}} %<br> \put(-3,44){\sx{.6}{$-6$}} %<br> \put(-3,24){\sx{.6}{$-8$}} %<br> \put(-2,00){\sx{.6}{$-10$}} %<br> \put( 22,0){\sx{.6}{$-8$}} %<br> \put( 42,0){\sx{.6}{$-6$}} %<br> \put( 62,0){\sx{.6}{$-4$}} %<br> \put( 82,0){\sx{.6}{$-2$}} %<br> \put(106,0){\sx{.6}{$0$}} %<br> \put(126,0){\sx{.6}{$2$}} %<br> \put(146,0){\sx{.6}{$4$}} %<br> \put(166,0){\sx{.6}{$6$}} %<br> \put(186,0){\sx{.6}{$8$}} %<br> \put(203,0){\sx{.7}{$x$}} %<br> %<br> \put(020,103.5){\sx{.99}{\bf cut}} %<br> \put(182,103.5){\sx{.99}{$v\!=\!0$}} %<br> %<br> \put(97,200){\rot{-73}\sx{.99}{$u\!=\!4$}\ero}%<br> \put(175,182){\rot{12}\sx{.99}{$u\!=\!3.4$}\ero}%<br> \put(182,153){\rot{-21}\sx{.99}{$u\!=\!3$}\ero}%<br> \put(185,55){\rot{21}\sx{.99}{$u\!=\!3$}\ero}%<br> \put(174,25){\rot{-13}\sx{.99}{$u\!=\!3.4$}\ero}%<br> \put(103.4,15){\rot{71}\sx{.99}{$u\!=\!4$}\ero}%<br> \put(074.6,29){\rot{42}\sx{.99}{$u\!=\!4.2$}\ero}%<br> \put(059,60){\rot{7}\sx{.99}{$u\!=\!4.4$}\ero}%<br> %<br> \put(160,189){\rot{-60}\sx{.99}{$v\!=\!1$}\ero}%<br> \put(147,6){\rot{42}\sx{.99}{$v\!=\!-1$}\ero}%<br> %<br> \put(42,163){\rot{64}\sx{.99}{$v\!=\!1$}\ero}%<br> \put(113,122){\rot{65}\sx{.99}{$v\!=\!2$}\ero}%<br> \end{picture} %<br> } %<br> \end{document}
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 17:50, 20 June 2013 | 2,180 × 2,159 (1.07 MB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
There are no pages that use this file.