Difference between revisions of "File:2014rubleDollar3param.png"
Line 1: | Line 1: | ||
+ | {{oq|2014rubleDollar3param.png|}} |
||
+ | |||
Price of 100 Russian roubles, evaluated in the USA cents, versus time. |
Price of 100 Russian roubles, evaluated in the USA cents, versus time. |
||
+ | This figure appears as fig.2 in publication <ref name="ruble"> |
||
⚫ | |||
+ | https://www.m-hikari.com/ams/ams-2015/ams-17-20-2015/kouznetsovAMS17-20-2015.pdf |
||
+ | Dmitrii Kouznetsov. |
||
+ | Currency Band and the Approximations: |
||
+ | Fitting of Rouble with 3-Parametric Functions. |
||
+ | Applied Mathematical Sciences, Vol. 9, 2015, no. 17, 831 - 838 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121056 |
||
+ | </ref>. |
||
+ | |||
+ | Data since 2014.02.20 to 2015.01.09 (the date of submission) are considered. |
||
+ | |||
⚫ | |||
Pink dots represent the experimental data by |
Pink dots represent the experimental data by |
||
Line 7: | Line 19: | ||
The thick smooth lines are formed by the four sets of approximations. |
The thick smooth lines are formed by the four sets of approximations. |
||
− | Each set is formed with specific |
+ | Each set is formed with specific 3-parametric function \(f\), and values of parameters are chosen to minimize the mean square deviation |
− | + | \(\displaystyle Q=\sqrt{ \sum_{n=1}^m \big(F_n-f(X_n)\big)^2 }\) |
|
− | for |
+ | for \(M-50\le m\le M\), where \(M\) is total number of experimental dots available for the day of plotting. For each \(m\), the single curve is drawn, emulating situation when the data with number larger \(m\) are not yet available. With growth of \(m\), the evolution of the approximation with time can be traced. The thickness of the resulting line qualifies the instability of the approximation. |
− | In the way mentioned above, the following four functions |
+ | In the way mentioned above, the following four functions \(f\) are considered and plotted: |
− | + | \(f(x)=\mathrm{Bell}(x) = a\ /\cosh(b(x+c))\) |
|
− | + | \(f(x)=\mathrm{Gauss}(x) = a \exp(b x+c x^2))\) |
|
− | + | \(f(x)=\mathrm{Quadratic}(x) = a + b x +c x^2\) |
|
− | + | \(f(x)=\mathrm{Ellipse}(x)=a \sqrt{(b-x)(c+x)}\) |
|
For these functions, the mean square deviations is of order of 10. |
For these functions, the mean square deviations is of order of 10. |
||
− | The input data are stored as array of pairs |
+ | The input data are stored as array of pairs \(X_n\), \(F_n\) ; |
+ | the input file is loaded at https://mizugadro.mydns.jp/t/index.php/File:Roublellip.png#Data |
||
+ | |||
+ | <!-- |
||
==References== |
==References== |
||
Line 33: | Line 48: | ||
http://mizugadro.mydns.jp/PAPERS/2015ruble.pdf |
http://mizugadro.mydns.jp/PAPERS/2015ruble.pdf |
||
D.Kouznetsov. Currency band and the approximations: Fitting of rouble with 3-parametric functions. 2015, under consideration. |
D.Kouznetsov. Currency band and the approximations: Fitting of rouble with 3-parametric functions. 2015, under consideration. |
||
+ | !--> |
||
==Mathematica generator of lines== |
==Mathematica generator of lines== |
||
+ | <pre> |
||
− | <poem><nomathjax><nowiki> |
||
g0 = Import["~/Q/RUBLE/BUL/TRY01/ddat.txt", "Table"]; |
g0 = Import["~/Q/RUBLE/BUL/TRY01/ddat.txt", "Table"]; |
||
T0[i_] := Extract[Extract[g0, i], 1]; |
T0[i_] := Extract[Extract[g0, i], 1]; |
||
Line 120: | Line 136: | ||
Export["p34.pdf", p3] |
Export["p34.pdf", p3] |
||
+ | </pre> |
||
− | </nowiki></nomathjax></poem> |
||
==[[C++]] generator of dates== |
==[[C++]] generator of dates== |
||
Line 167: | Line 183: | ||
==Latex generator of labels== |
==Latex generator of labels== |
||
+ | <pre> |
||
− | <poem><nomathjax><nowiki> |
||
\documentclass[12pt]{article} |
\documentclass[12pt]{article} |
||
\usepackage{geometry} |
\usepackage{geometry} |
||
Line 208: | Line 224: | ||
\end{picture} |
\end{picture} |
||
\end{document} |
\end{document} |
||
+ | </pre> |
||
− | </nowiki></nomathjax></poem> |
||
+ | ==References== |
||
+ | {{ref}} |
||
+ | {{fer}} |
||
+ | |||
+ | ==Keywords== |
||
+ | «[[Fraud]]», |
||
+ | «[[Inflation]]», |
||
+ | «[[Insider trading]]», |
||
+ | «[[Moscovia]]», |
||
+ | «[[Pump and down]]», |
||
+ | «[[Ruble]]», |
||
+ | «[[TrumptyDumpty]]», |
||
+ | |||
+ | «[[Инфляция]]», |
||
+ | «[[Коррупция]]», |
||
+ | «[[Московия]]», |
||
+ | «[[Рубль]]», |
||
[[Category:Ruble]] |
[[Category:Ruble]] |
||
[[Category:Rouble]] |
[[Category:Rouble]] |
||
[[Category:Approximation]] |
[[Category:Approximation]] |
||
+ | [[Category:Fraud]] |
||
+ | [[Category:History]] |
||
[[Category:Inflation]] |
[[Category:Inflation]] |
||
+ | [[Category:Insider trading]] |
||
+ | [[Category:Pump and down]] |
||
[[Category:Russia]] |
[[Category:Russia]] |
||
[[Category:Mathematica]] |
[[Category:Mathematica]] |
||
+ | [[Category:Moscovia]] |
||
[[Category:Latex]] |
[[Category:Latex]] |
Latest revision as of 16:23, 15 April 2025
Price of 100 Russian roubles, evaluated in the USA cents, versus time.
This figure appears as fig.2 in publication [1].
Data since 2014.02.20 to 2015.01.09 (the date of submission) are considered.
Time \(x\) is measured in days since the beginning of the project, 2014.10.27.
Pink dots represent the experimental data by https://www.mataf.net/en/currency/converter-USD-RUB
The thick smooth lines are formed by the four sets of approximations. Each set is formed with specific 3-parametric function \(f\), and values of parameters are chosen to minimize the mean square deviation
\(\displaystyle Q=\sqrt{ \sum_{n=1}^m \big(F_n-f(X_n)\big)^2 }\)
for \(M-50\le m\le M\), where \(M\) is total number of experimental dots available for the day of plotting. For each \(m\), the single curve is drawn, emulating situation when the data with number larger \(m\) are not yet available. With growth of \(m\), the evolution of the approximation with time can be traced. The thickness of the resulting line qualifies the instability of the approximation.
In the way mentioned above, the following four functions \(f\) are considered and plotted:
\(f(x)=\mathrm{Bell}(x) = a\ /\cosh(b(x+c))\)
\(f(x)=\mathrm{Gauss}(x) = a \exp(b x+c x^2))\)
\(f(x)=\mathrm{Quadratic}(x) = a + b x +c x^2\)
\(f(x)=\mathrm{Ellipse}(x)=a \sqrt{(b-x)(c+x)}\)
For these functions, the mean square deviations is of order of 10.
The input data are stored as array of pairs \(X_n\), \(F_n\) ; the input file is loaded at https://mizugadro.mydns.jp/t/index.php/File:Roublellip.png#Data
Mathematica generator of lines
g0 = Import["~/Q/RUBLE/BUL/TRY01/ddat.txt", "Table"]; T0[i_] := Extract[Extract[g0, i], 1]; G0[i_] := Extract[Extract[g0, i], 2]; M0 = Length[g0] lp = ListPlot[g0, PlotRange -> All, PlotStyle -> {RGBColor[1, 0, 1], PointSize[.04]}] For[i = M0 - 52, i < M0, i++; Print[i]; g = Table[{T0[j], G0[j]}, {j, 1, i}]; M = Length[g]; T[i_] := Extract[Extract[g, i], 1]; G[i_] := Extract[Extract[g, i], 2]; F[x_] = a + b x + c x^2; sub = FindFit[g, F[x], {a, b, c}, x]; Print[{f[x_] = ReplaceAll[F[x], sub], ReplaceAll[a, sub], ReplaceAll[b, sub], ReplaceAll[c, sub], Sum[Abs[f[T[i]] - G[i]], {i, 1, M}]/M, Sqrt[Sum[(f[T[i]] - G[i])^2, {i, 1, M}]/M], plo31[i] = Plot[f[x], {x, -260, 201}, PlotStyle -> {RGBColor[1, 0, 0]}, PlotRange -> All]; Show[lp, plo31[i]]}] ] For[i = M0 - 52, i < M0, i++; Print[i]; g = Table[{T0[j], G0[j]}, {j, 1, i}]; M = Length[g]; T[i_] := Extract[Extract[g, i], 1]; G[i_] := Extract[Extract[g, i], 2]; F[x_] = 300 a Exp[-.1 b x - .01 c x^2]; sub = FindFit[g, F[x], {a, b, c}, x]; Print[{f[x_] = ReplaceAll[F[x], sub], ReplaceAll[a, sub], ReplaceAll[b, sub], ReplaceAll[c, sub], Sum[Abs[f[T[i]] - G[i]], {i, 1, M}]/M, Sqrt[Sum[(f[T[i]] - G[i])^2, {i, 1, M}]/M], plo32[i] = Plot[f[x], {x, -261, 261}, PlotStyle -> {RGBColor[0, 1, 0]}, PlotRange -> All]; Show[lp, plo32[i]]}] ] Show[lp, Table[plo31[n], {n, M0 - 51, M0}], Table[plo32[n], {n, M0 - 51, M0}], PlotRange -> {{-261, 201}, {-2, 310}}, AspectRatio -> Automatic, GridLines -> Automatic] For[i = M0 - 52, i < M0, i++; Print[i]; g = Table[{T0[j], G0[j]}, {j, 1, i}]; M = Length[g]; T[i_] := Extract[Extract[g, i], 1]; G[i_] := Extract[Extract[g, i], 2]; F[x_] = 300 a Sqrt[(100 + b - x) (400 + c + x)]; sub = FindFit[g, F[x], {a, b, c}, x]; Print[{f[x_] = ReplaceAll[F[x], sub], ReplaceAll[a, sub], ReplaceAll[b, sub], ReplaceAll[c, sub], Sum[Abs[f[T[i]] - G[i]], {i, 1, M}]/M, Sqrt[Sum[(f[T[i]] - G[i])^2, {i, 1, M}]/M], plo33[i] = Plot[f[x], {x, -261, 261}, PlotRange -> All, PlotStyle -> RGBColor[0, 0, 0]]; Show[lp, plo33[i]]}] ] Show[lp, Table[plo31[n], {n, M0 - 51, M0}], Table[plo32[n], {n, M0 - 51, M0}], Table[plo33[n], {n, M0 - 51, M0}], PlotRange -> {{-261, 201}, {-2, 310}}, AspectRatio -> Automatic, GridLines -> Automatic] For[i = M0 - 52, i < M0, i++; Print[i]; g = Table[{T0[j], G0[j]}, {j, 1, i}]; M = Length[g]; T[i_] := Extract[Extract[g, i], 1]; G[i_] := Extract[Extract[g, i], 2]; F[x_] = 300 a /Cosh[.01 b (100 + c + x)]; sub = FindFit[g, F[x], {a, b, c}, x]; Print[{f[x_] = ReplaceAll[F[x], sub], ReplaceAll[a, sub], ReplaceAll[b, sub], ReplaceAll[c, sub], Sum[Abs[f[T[i]] - G[i]], {i, 1, M}]/M, Sqrt[Sum[(f[T[i]] - G[i])^2, {i, 1, M}]/M], plo34[i] = Plot[f[x], {x, -261, 261}, PlotRange -> All, PlotStyle -> RGBColor[0, 0, 1]]; Show[lp, plo34[i]]}] ] p3 = Show[lp, Table[plo31[n], {n, M0 - 51, M0}], Table[plo32[n], {n, M0 - 51, M0}], Table[plo33[n], {n, M0 - 51, M0}], Table[plo34[n], {n, M0 - 51, M0}], PlotRange -> {{-251, 251}, {-2, 310}}, AspectRatio -> Automatic, GridLines -> {{-250, -200, -150, -100, -50, 50, 100, 150, 200, 250}, {50, 100, 150, 200, 250, 300}}] Export["p34.pdf", p3]
C++ generator of dates
#include<stdio.h>
#include<math.h>
void ju24da(int Mjd, int *Year, int *Month, int *Day) { int J, C, Y, M;
J = Mjd + 2400000 + 68569;
C = 4 * J / 146097;
J = J - (146097 * C + 3) / 4;
Y = 4000 * (J + 1) / 1461001;
J = J - 1461 * Y / 4 + 31;
M = 80 * J / 2447;
*Day = J - 2447 * M / 80;
J = M / 11;
*Month = M + 2 - (12 * J);
*Year = 100 * (C - 49) + Y + J;
// http://www.leapsecond.com/tools/gpsdate.c
}
int daju24(int Y,int M, int D)
{ int a, y,m;
a=(14-M)/12;
y=Y+4800-a;
m=M+12*a-3;
return D + (153*m+2)/5 +365*y + y/4 - y/100 + y/400 -32045 - 2400000;
}
int main(){int j, k, n, y,m,d;
k=daju24(2014,10,27);
ju24da(k,&y,&m,&d); printf("%4d %4d %2d %2d\n",k,y,m,d);
n=-2300,ju24da(k+n,&y,&m,&d); printf("%4d %4d %2d %2d\n",n,y,m,d);
n=-2200,ju24da(k+n,&y,&m,&d); printf("%4d %4d %2d %2d\n",n,y,m,d);
n=-2100,ju24da(k+n,&y,&m,&d); printf("%4d %4d %2d %2d\n",n,y,m,d);
n=-2000,ju24da(k+n,&y,&m,&d); printf("%4d %4d %2d %2d\n",n,y,m,d);
ju24da(k-226,&y,&m,&d); printf("%4d %4d %2d %2d\n",-226,y,m,d);
for(n=-300;n<600;n+=50){
ju24da(k+n,&y,&m,&d);
j=daju24(y,m,d);
printf("%4d %4d %2d %2d %4d\n",n,y,m,d,j-k); }
}
Latex generator of labels
\documentclass[12pt]{article} \usepackage{geometry} \paperwidth 368pt \paperheight 242pt \topmargin -66pt \oddsidemargin -70pt \usepackage{hyperref} \usepackage{graphicx} \usepackage{rotating} \newcommand \sx {\scalebox} \newcommand \rot {\begin{rotate}} \newcommand \ero {\end{rotate}} \thispagestyle{empty} \parindent 0pt \begin{document} \begin{picture}(400,200) \put(0,0){\includegraphics{p34}} \put(6,19){\sx{1.}{\rot{90}{\bf 2014.02.19}\ero}} \put(42,19){\sx{1.}{\rot{90}{\bf 2014.04.10}\ero}} \put(77,19){\sx{1.}{\rot{90}{\bf 2014.05.30}\ero}} \put(114,19){\sx{1.}{\rot{90}{\bf 2014.07.19}\ero}} % \put(151,19){\sx{1.}{\rot{90}{\bf 2014.09.07}\ero}} % \put(185,19){\sx{1.}{\rot{90}{\bf 2014.10.27}\ero}} % %\put(220,19){\sx{1.}{\rot{90}{\bf 2014.12.16}\ero}} % %\put(256,19){\sx{1.}{\rot{90}{\bf 2015.02.23}\ero}} %\put(292,19){\sx{1.}{\rot{90}{\bf 2015.04.13}\ero}} %\put(328,19){\sx{1.}{\rot{90}{\bf 2015.05.15}\ero}} %\put(364,19){\sx{1.}{\rot{90}{\bf 2015.07.04}\ero}} \put(168,238){\sx{1.1}{$y$}} %\put(324,163){\sx{1.1}{\rot{-4}$f_{23}(x)$\ero}} %\put(324,150){\sx{1.1}{\rot{-6}$f_{22}(x)$\ero}} \put(302,114){\sx{1.1}{\rot{-28}$y=\mathrm{Bell}(x)$\ero}} \put(299,77){\sx{1.1}{\rot{-35}$y\!=\!\mathrm{Gauss}(x)$\ero}} \put(277,86){\sx{1.1}{\rot{-56}$y\!=\!\mathrm{Quadratic}(x)$\ero}} \put(230,95){\sx{1.1}{\rot{-80}$y\!=\!\mathrm{Ellipse}(x)$\ero}} %\put(190,105){\sx{1.2}{experimental}} %\put(204,92){\sx{1.2}{data}} \put(355,2){\sx{1.1}{$x$}} \end{picture} \end{document}
References
- ↑ https://www.m-hikari.com/ams/ams-2015/ams-17-20-2015/kouznetsovAMS17-20-2015.pdf Dmitrii Kouznetsov. Currency Band and the Approximations: Fitting of Rouble with 3-Parametric Functions. Applied Mathematical Sciences, Vol. 9, 2015, no. 17, 831 - 838 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121056
Keywords
«Fraud», «Inflation», «Insider trading», «Moscovia», «Pump and down», «Ruble», «TrumptyDumpty»,
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 06:09, 1 December 2018 | ![]() | 1,273 × 837 (294 KB) | Maintenance script (talk | contribs) | Importing image file |
You cannot overwrite this file.
File usage
The following 4 pages use this file: